Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T03:50:25.004Z Has data issue: false hasContentIssue false

Crystalline Phases and Electronic Structures in Superconducting Bi – Sr – Ca – Cu Oxides

Published online by Cambridge University Press:  31 January 2011

M. D. Giardina
Affiliation:
Institute of Advanced Materials, C.E.C. Joint Research Centre, Ispra Establishment, 21020 Ispra (Va), Italy
R. Feduzi
Affiliation:
Institute of Advanced Materials, C.E.C. Joint Research Centre, Ispra Establishment, 21020 Ispra (Va), Italy
D. Inzaghi
Affiliation:
Institute of Advanced Materials, C.E.C. Joint Research Centre, Ispra Establishment, 21020 Ispra (Va), Italy
A. Manara
Affiliation:
Institute of Advanced Materials, C.E.C. Joint Research Centre, Ispra Establishment, 21020 Ispra (Va), Italy
C. Giori
Affiliation:
Istituto di Scienze Fisiche, Universitá di Parma, 43100 Parma, Italy
I. Natali
Affiliation:
Dipartimento di Chimica e Fisica per i Materiali, Universitá di Brescia, 25100 Brescia, Italy
V. Dallacasa
Affiliation:
Istituto Policattedra, Universitá di Verona, 37100 Verona, Italy
Get access

Abstract

Two classes of samples, designated A and B, of layered Bi–Sr–Ca–Cu oxides having the same nominal composition 4 : 3 : 3 : 4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples presented only two superconducting phases with midpoints of the transition temperatures at ∼80 K and ∼105 K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Giardina, M. D., Feduzi, R., Manara, a., Spirlet, J. C., Zocchi, M., Depero, L. E., and Mobilio, S., J. Mater. Res. 6, 1838 (1991).CrossRefGoogle Scholar
2.Tarascon, J. M., LePage, Y., Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).CrossRefGoogle Scholar
3.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).Google Scholar
4.von Schnering, H. G., Walz, L., Schwarz, M., Becker, W., Hartweg, M., Popp, T., Hettich, B., Mueller, P., and Kaempf, G., Angewandte Chemie 100, 604 (1988).Google Scholar
5.Retoux, R., Studer, E., Michel, C., Raveau, B., Fontaine, A., and Dartyge, E., Phys. Rev. 841, 193 (1990).CrossRefGoogle Scholar
6.Blazey, K. W., Müller, K. A., Bednorz, J.B, Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., and Matacotta, F. C., Phys. Rev. B 36, 7241 (1987).CrossRefGoogle Scholar
7.Buluggiu, E., Vera, A., and Amoretti, G., Physica C 171, 271 (1990).Google Scholar
8.Buluggiu, E., Vera, A., Giori, D. C., Amoretti, G., and Licci, F., Supercond. Sci. Technol. 4, 595 (1991).Google Scholar
9. JCPDS Database, International Centre for Diffraction Data, Card No. 40-378.Google Scholar
10. JCPDS Database, International Centre for Diffraction Data, Card No. 42-743.Google Scholar
11. JCPDS Database, International Centre for Diffraction Data, Card No. 39-283.Google Scholar
12.Balerna, A., Buschert, R., Giardina, M. D., Inzaghi, D., and Mobilio, S., J. Phys. (Paris), Collaque C8, Suppl. No. 121, Tome 47, C8-117 (Dec. 1984).Google Scholar
13.Pham, A. Q., Studer, F., Merrien, N., Maignan, A., Michel, C., and Raveau, B., Phys. Rev. B 48, 1249 (1993).CrossRefGoogle Scholar
14.Rao, K. J. and Wong, J., J. Chem. Phys. 81, 4832 (1984).CrossRefGoogle Scholar
15.Krishnaraj, T., Lelovic, M., Eror, N. G., and Balachandran, U., Physica C 246, 271 (1995).Google Scholar
16.Dallacasa, V. and Feduzi, R., Phys. Lett. A 170, 153 (1992).Google Scholar
17.Dallacasa, V. and Feduzi, R., Physica C 251, 156 (1995).CrossRefGoogle Scholar
18.Hillebrecht, F. U., Fraxedas, J., Ley, L., Trodahl, H. J., Zaanen, J., Braun, W., Mast, M., Petersem, H., Schaible, M., Bourne, L. C., Pinsukanjana, P., and Zetti, A., Phys. Rev. B 39, 236 (1989).CrossRefGoogle Scholar