Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T13:30:00.022Z Has data issue: false hasContentIssue false

Correlation of the Raman spectra with the thermal conductivity of a set of diamond wafers prepared by chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Edgar S. Etz*
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Wilbur S. Hurst
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Albert Feldman
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

Raman spectroscopy, at laser excitation wavelengths of 514.5, 785, and 1064 nm, is used to study a set of chemical-vapor-deposited (CVD) diamond wafers of known thermal conductivity κ. The in-plane thermal conductivity (at 25 °C) of the diamond wafers ranges from 4 to 22 W cm−1 K−1 and represents a wide range of diamond quality. The spectra were obtained from both macro/micro- sampling measurements, examining the top and bottom wafer surface, as well as wafer cross-sections. Discussed are the peak positions and linewidths of the Raman bands and their relation to sp3-bonded diamond and sp2-bonded carbon in the context of diamond quality and perfection, and the effects of wafer heterogeneities. The detailed analysis of the Raman spectra provides a robust correlation with the room-temperature bulk (or macroscopic) thermal conductivity of these samples. The correlation is made through the determination of the band area ratios of the diamond Raman line at 1333 cm−1 to that of the 1550 cm−1 band characteristic of nondiamond carbon impurities. This dependence is most pronounced for the Fourier-transform Raman data obtained with infrared excitation at 1064 nm, due to resonance enhancement, and therefore allows the detection of carbon impurities, especially for high-quality CVD diamond.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thin Film Diamond, edited by Lettington, A. and Steeds, J.W. (Chapman and Hall, London, United Kingdom, 1994).CrossRefGoogle Scholar
2.Railkar, T.A., Kang, W.P., Windischmann, H., Malshe, A.P., Naseem, H.A., Davidson, J.L., and Brown, W.D., Crit. Rev. Solid State Mater. Sci. 25, 163 (2000).CrossRefGoogle Scholar
3.Graebner, J.E., Mucha, J.A., Seibles, L., and Kammlott, G.W., J. Appl. Phys. 71, 3143 (1992).Google Scholar
4.Heiderhoff, R., Koschinski, P., Maywald, M., Balk, L.J., and Bachmann, P.K., Diamond Rel. Mater. 4, 645 (1995).Google Scholar
5.Pickard, C.D.O., Davis, T.J., Wang, W.N., and Steeds, J.W., Diamond Rel. Mater. 7, 238 (1998).Google Scholar
6.Nemanich, R.J., Glass, J.T., Lucovsky, G., and Shroder, R.E., J. Vac. Sci. Technol. A6, 1783 (1988).CrossRefGoogle Scholar
7.Knight, D.S. and White, W.B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
8.Wang, Y., Alsmeyer, D.C., and McCreery, R.L., Chem. Mater. 2, 557 (1990).CrossRefGoogle Scholar
9.Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
10.Ager III, J.W., Veirs, D.K., and Rosenblatt, G.M., Phys. Rev. B 43, 6491 (1991).Google Scholar
11.Wörner, E., Wagner, J., Müller-Sebert, W., Wild, C., and Koidl, P., Appl. Phys. Lett. 68, 1482 (1996).Google Scholar
12.Sails, S.R., Gardiner, D.J., Bowden, M., Savage, J., and Rodway, D., Diamond Rel. Mater. 5, 589 (1996).Google Scholar
13.Wagner, J., Wild, C., and Koidl, P., Appl. Phys. Lett. 59, 779 (1991).CrossRefGoogle Scholar
14.Griesser, M., Grasserbauer, M., Kellner, R., Bohr, S., Haubner, R., and Lux, B., Fresenius J. Anal. Chem. 352, 763 (1995).Google Scholar
15.Leeds, S.M., Davis, T.J., May, P.W., Pickard, C.D.O., and Ashfold, M.N.R., Diamond Rel. Mater. 7, 233 (1998).Google Scholar
16.Graebner, J.E., Diamond Rel. Mater. 4, 1196 (1995).CrossRefGoogle Scholar
17.Wang, X.H., Pilione, L., Zhu, W., Yarbrough, W., Drawl, W., and Messier, R., J. Mater. Res. 5, 2345 (1990).Google Scholar
18.Graebner, J.E., Jin, S., Kammlott, G.W., Wong, Y-H., Herb, J.A., and Gardinier, C.F., Diamond Rel. Mater. 2, 1059 (1993).CrossRefGoogle Scholar
19.Bachmann, P.K., Hagemann, H.J., Lade, H., Leers, D., Wiechert, D.U., Wilson, H., Fournier, D., and Plamann, K., Diamond Rel. Mater. 4, 820 (1995).Google Scholar
20.Gray, K.J. and Windischmann, H., Diamond Rel. Mater. 8, 903 (1999).CrossRefGoogle Scholar
21.Graebner, J.E., Altmann, H., Balzaretti, N.M., Campbell, R., Chae, H-E., Degiovanni, A., Enck, R., Feldman, A., Fournier, D., Fricke, J., Goela, J.S., Gray, K.J., Gu, Y.Q., Hatta, I., Hartnett, T.M., Imhof, R.E, Kato, R., Koidl, P., Kuo, P.K., Lee, T-K., Maillet, D., Remy, B., Roger, J.P., Seong, D-J., Tye, R.P., Verhoeven, H., Wörner, E., Yehoda, J.E., Zachai, R., and Zhang, B., Diamond Rel. Mater. 7, 1589 (1998).Google Scholar
22.Etz, E.S., in Microbeam Analysis-1994, edited by Friel, J.J. (VCH Publishers, New York, 1994), p. 71 ff.Google Scholar
23.Etz, E.S., in Workshop on Raman Spectroscopy in Optical and Materials Sciences, edited by Weber, A. (NIST IR 6032, NIST, Gaithersburg, MD, 1996), pp. 1832.Google Scholar
24.Balzaretti, N.M., Feldman, A., Etz, E.S., and Gat, R., J. Mater. Res. 14, 3720 (1999).CrossRefGoogle Scholar
25.Graebner, J.E., Reiss, M.E., Seibles, L., Hartnett, T.M., Miller, R.P., and Robinson, C.J., Phys. Rev. B 50, 3702 (1994).Google Scholar
26.Feldman, A., in Applications of Diamond Films and Related Materials, edited by Feldman, A., Tseng, Y., Yarbrough, W.A., Yoshikawa, M., and Murakawa, M., Natl. Inst. Stand. Technol. Spec. Publ. 885, U.S.Government Printing Office, Washington, DC (1995), pp. 627630.Google Scholar
27.Prawer, S., Nugent, K.W., and Weiser, P.S., Appl. Phys. Lett. 65, 2248 (1994).Google Scholar
28.Bergman, L. and Nemanich, R.J., J. Appl. Phys. 78, 6709 (1995).Google Scholar
29.Morell, G., Quiñones, O., Diaz, Y., Vargas, I.M., Weiner, B.R., and Katiyar, R.S., Diamond Rel. Mater. 7, 1029 (1998).CrossRefGoogle Scholar
30.Robins, L.H., Farabaugh, E.N., and Feldman, A., J. Mater. Res. 5, 2456 (1990).Google Scholar
31.Nistor, L.C., Van Landuyt, J., Ralchenko, V.G., Obraztsova, E.D., and Smolin, A.A., Diamond Rel. Mater. 6, 159 (1997).CrossRefGoogle Scholar
32.Perry, S.S., Ager III, J.W., and Samorjai, G.A., J. Mater. Res. 8, 2577 (1993).Google Scholar
33.Collins, A.T., Diamond Rel. Mater. 8, 1455 (1999).CrossRefGoogle Scholar
34.Lu, G., Gray, K.J., Borchelt, E.F., Bigelow, L.K., and Graebner, J.E., Diamond Rel. Mater. 2, 1064 (1993).Google Scholar
35.Fuchs, F., Wild, C., Schwarz, K., and Koidl, P., Diamond Rel. Mater. 4, 652 (1995).CrossRefGoogle Scholar
36.Clark, C.D., Mitchell, E.W.J., and Parsons, B.J., in The Properties of Diamond, edited by Field, J.E. (Academic Press, London, United Kingdom, 1979), Chap. 2, pp. 2377.Google Scholar