Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T09:46:05.181Z Has data issue: false hasContentIssue false

Constitutive modeling of the effects of oxygen on the deformation behavior of silicon

Published online by Cambridge University Press:  31 January 2011

Dimitris Maroudas
Affiliation:
Department of Chemical Engineering and Materials Processing Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Robert A. Brown
Affiliation:
Department of Chemical Engineering and Materials Processing Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

A systematic theory is presented that models the effects of interstitial oxygen on the deformation behavior of silicon. The theory is based on calculation of the dependence of the dislocation velocity on the applied stress in the crystal and determination of the locking and unlocking stresses for dislocation motion. Internal stresses in the oxygen-hardened crystals are modeled by the superposition of the unlocking stress, a back stress due to the interaction between mobile dislocations, and an internal stress that arises from the interaction between a dislocation and the oxygen cloud around other dislocations. The initiation of dislocation multiplication is modeled as a two-step thermally activated process; the first step is the unlocking of the dislocation and the second step is the formation of jogs along the dislocation line. The coupled model for oxygen transport and dislocation motion is used to simulate crystal deformation in dynamic experiments and to reproduce stress-strain curves. The predictions of the initial stage of deformation are in good agreement with the experimental data of Yonenaga et al. [J. Applied Phys. 56, 2346 (1984)].

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ghandi, S. K., VLSI Fabrication Principles: Silicon and Gallium Arsenide (Wiley, New York, 1983).Google Scholar
2.Ravi, K. V., Imperfections and Impurities in Semiconductor Silicon (Wiley, New York, 1981).Google Scholar
3.Patel, J. R. and Chaudhuri, A. R., Phys. Rev. 143, 601 (1966).CrossRefGoogle Scholar
4.Alexander, H. and Haasen, P., Solid State Phys. 22, 27 (1968).CrossRefGoogle Scholar
5.Brion, H. G., Haasen, P., and Siethoff, H., Acta Metall. 19, 283 (1971).CrossRefGoogle Scholar
6.Sumino, K., in Defects and Properties of Semiconductors: Defect Engineering, edited by Chikawa, J., Sumino, K., and Wada, K. (KTK Scientific Publishers, Tokyo, 1987), p.227.CrossRefGoogle Scholar
7.Jacob, G., in Proc. Semi-Insulating III-V Materials Conf, Evian, 2 (1982).Google Scholar
8.Seki, Y., Watanabe, J., and Matsui, J., J. Appl. Phys. 49, 822 (1978).CrossRefGoogle Scholar
9.Mikkelsen, J. C. Jr, in Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J. C. Jr, Pearton, S. J., Corbett, J. W., and Pennycook, S. J. (Mater. Res. Soc. Symp. Proc. 59, Pittsburgh, PA, 1986), pp. 3,19.Google Scholar
10.Lin, W. and Benson, K. E., Annu. Rev. Mater. Sci. 17, 293 (1987).CrossRefGoogle Scholar
11.Sumino, K., Harada, H., and Yonenaga, I., Jpn. J. Appl. Phys. 19, L49 (1980).CrossRefGoogle Scholar
12.Sumino, K. and Yonenaga, I., Jpn. J. Appl. Phys. 20, L685 (1981).CrossRefGoogle Scholar
13.Maroudas, D. and Brown, R. A., J. Appl. Phys. 69, 3865 (1991).CrossRefGoogle Scholar
14.Maroudas, D. and Brown, R. A., Appl. Phys. Lett. 58, 1842 (1991).CrossRefGoogle Scholar
15.Cottrell, A. H. and Bilby, B. A., Proc. Phys. Soc. London A62, 49 (1949).CrossRefGoogle Scholar
16.Cottrell, A. H. and Jawson, M. A., Proc. R. Soc. London A199, 104 (1949).Google Scholar
17.Yoshinaga, H. and Morozumi, S., Philos. Mag. 23, 1367 (1971).CrossRefGoogle Scholar
18.Needels, M., Joannopoulos, J. D., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 43, 4208 (1991).CrossRefGoogle Scholar
19.Yonenaga, I., Sumino, K., and Hoshi, K., J. Appl. Phys. 56, 2346 (1984).CrossRefGoogle Scholar
20.Imai, M. and Sumino, K., Philos. Mag. A 47, 599 (1983).CrossRefGoogle Scholar
21.Bullough, R. and Newman, R. C., Rep. Prog. Phys. 33, 101 (1970).CrossRefGoogle Scholar
22.Nandedkar, S. and Narayan, J., Philos. Mag. A 56, 625 (1987).CrossRefGoogle Scholar
23.Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982).Google Scholar
24.Nabarro, F. R. N., Theory of Crystal Dislocations (Dover, New York, 1987).Google Scholar
25.Sumino, K. and Imai, M., Philos. Mag. A 47, 753 (1983).CrossRefGoogle Scholar
26.Haasen, P., Z. Phys. 167, 461 (1962).CrossRefGoogle Scholar
27.Suezawa, M., Sumino, K., and Yonenaga, I., Phys. Status Solidi A 51, 217 (1979).CrossRefGoogle Scholar
28.Dillon, O. W., Jr., Tsai, C. T., and DeAngelis, R. J., J. Cryst. Growth 82, 50 (1987).CrossRefGoogle Scholar
29.Lambropoulos, J. C., J. Cryst. Growth 84, 349 (1987).CrossRefGoogle Scholar
30.Landolt-Börnstein: Crystal and Solid State Physics, edited by Hellwege, K. H. (Springer, Berlin, 1979), Vol. 11, p. 116.Google Scholar
31.Kluge, M. D., Ray, J. R., and Rahman, A., J. Chem. Phys. 85, 4028 (1986).CrossRefGoogle Scholar
32.Ray, J. R., Comput. Phys. Rep. 8, 109 (1988).CrossRefGoogle Scholar
33.Eshelby, J. D., in Vacancies '76, edited by Smallman, R. E. and Harris, J. E. (The Metals Society, U. K., 1976), p. 3; also see Ref. 24, p. 403.Google Scholar
34.Cottrell, A. H., Dislocations and Plastic Flow in Crystals (Oxford University Press, 1953).Google Scholar
35.Sumino, K. and Harada, H., Philos. Mag. A 44, 1319 (1981).CrossRefGoogle Scholar
36.Johnston, W. G. and Gilman, J. J., J. Appl. Phys. 30, 129 (1959).CrossRefGoogle Scholar
37.Johnston, W. G. and Gilman, J. J., J. Appl. Phys. 31, 632 (1960).CrossRefGoogle Scholar
38.Li, J. C. M., J. Appl. Phys. 32, 593 (1961).CrossRefGoogle Scholar
39.Wiedersich, H., J. Appl. Phys. 33, 854 (1962).CrossRefGoogle Scholar
40.Low, J. R. Jr and Turkalo, A. M., Acta Metall. 10, 215 (1962).CrossRefGoogle Scholar
41.Labusch, R., Phys. Status Solidi 10, 645 (1965).CrossRefGoogle Scholar
42.Yonenaga, I. and Sumino, K., Phys. Status Solidi A 50, 685 (1978).CrossRefGoogle Scholar
43.Boley, B. and Weiner, J., Theory of Thermal Stresses (Wiley, New York, 1960).Google Scholar
44.Orowan, E., Proc. Phys. Soc. London 52, 8 (1940).CrossRefGoogle Scholar
45.Sumino, K., Mater. Sci. Eng. 13, 269 (1974).CrossRefGoogle Scholar
46.Schmid, E. and Boas, W., Plasticity of Crystals (Hughes, London, 1968).Google Scholar
47.Jordan, A. S., Caruso, R., and Neida, A. R.Von, Bell System Technol. J. 59, 593 (1980).CrossRefGoogle Scholar
48.Müller, G., Rupp, R., Völkl, J., Wolf, H., and Blum, W., J. Cryst. Growth 71, 771 (1985).CrossRefGoogle Scholar
49.Maroudas, D. and Brown, R. A., J. Cryst. Growth 108, 399 (1991).CrossRefGoogle Scholar
50.Krausz, A. S. and Eyring, H., Deformation Kinetics (Wiley, New York, 1975).Google Scholar
51.Heggie, M. I., Jones, B., and Umerski, A., in Atomic Scale Calculations of Structure in Materials, edited by Daw, M. S. and Schlüter, M. A. (Mater. Res. Soc. Symp. Proc. 193, Pittsburgh, PA, 1990), p. 277.Google Scholar