Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T12:18:07.843Z Has data issue: false hasContentIssue false

Characterization and assessment of the wideband magnetic properties of nanocrystalline alloys and soft ferrites

Published online by Cambridge University Press:  13 August 2018

Enzo Ferrara*
Affiliation:
Istituto Nazionale di Ricerca Metrologica INRIM, Torino, Italy
Fausto Fiorillo
Affiliation:
Istituto Nazionale di Ricerca Metrologica INRIM, Torino, Italy
Cinzia Beatrice
Affiliation:
Istituto Nazionale di Ricerca Metrologica INRIM, Torino, Italy
Samuel Dobák
Affiliation:
Department of Nanosciences and Materials, Institute of Physics, P.J. Šafárik University, Košice, Slovakia
Carlo Ragusa
Affiliation:
Department of Energy, Politecnico di Torino, Torino, Italy
Alessandro Magni
Affiliation:
Istituto Nazionale di Ricerca Metrologica INRIM, Torino, Italy
Carlo Appino
Affiliation:
Istituto Nazionale di Ricerca Metrologica INRIM, Torino, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Efficient applications of magnetic cores in sensing and power electronics require low-loss and versatile soft magnetic materials, with excellent response on a wide range of frequencies. This objective is traditionally pursued with ferrite and Permalloy tape cores, available under a variety of properties. Comparable and even superior soft magnetic behavior can, however, be obtained with amorphous and nanocrystalline alloys, with the latter, in particular, combining flexible response to thermal treatments with high magnetic saturation. Broadband precise magnetic characterization of these materials, crucial to their use as inductive cores, is fully appreciated when associated with assessment by physical modeling. Comprehensive measuring approach and significant results obtained in sintered soft ferrites and nanocrystalline ribbons up to 1 GHz are highlighted in this paper. We show how broadband loss and permeability behaviors can be quantitatively interpreted in the framework of the loss separation concept, applied to eddy current and spin damping dissipation mechanisms.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

REFERENCES

Snelling, E.C.: Soft Ferrites: Properties and Applications, 2nd ed. (Butterworth-Heinemann, Oxford, U.K., 1989).Google Scholar
Pascard, H.: Basic concepts for high permeability in soft ferrites. J. Phys. IV 8, 377 (1998).Google Scholar
Rossignol, M.: Irreversibilité des processus d’aimantation et hystéresis dans les matériaux ferromagnétiques réels: Le rôle des défauts. In Magnétisme, Vol. I, du Trémolet de Lacheisserie, E., ed. (Presses Universitaires de Grenoble, Grenoble, France, 1999); p. 211.Google Scholar
Fiorillo, F., Appino, C., and Pasquale, M.: Hysteresis in magnetic materials. In The Science of Hysteresis, Vol. III, Bertotti, G. and Mayergoyz, I., eds. (Academic Press, San Diego, California, 2006); p. 1.Google Scholar
Yoshizawa, Y., Oguma, S., and Yamauchi, K.: New Fe-based magnetic alloy composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
Makino, A., Inoue, A., and Masumoto, T.: Nanocrystalline soft magnetic Fe–M–B (M = Zr, Hf, Nb) alloys produced by crystallization of amorphous phase. Mater. Trans. JIM 36, 924 (1995).CrossRefGoogle Scholar
Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 13971402 (1990).CrossRefGoogle Scholar
Herzer, G.: Nanocrystalline soft magnetic alloys. In Handbook of Magnetic Materials, Vol. 10, Buschow, K.H.J., ed. (Elsevier, Amsterdam, 1997); p. 415.Google Scholar
Willard, M.A., Laughlin, D.E., McHenry, M.E., Thoma, D., Sickafus, K., Cross, J.O., and Harris, V.G.: Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773 (1998).CrossRefGoogle Scholar
Martone, A., Dong, B., Lan, S., and Willard, M.A.: Iron rich (Fe1−xyNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction. AIP Adv. 8, 056126 (2018).CrossRefGoogle Scholar
Alben, R., Becker, J.J., and Chi, M.C.: Random anisotropy in amorphous magnets. J. Appl. Phys. 49, 1653 (1978).CrossRefGoogle Scholar
Kronmüller, H. and Fernengel, W.: The role of internal stresses in amorphous ferromagnetic alloys. Phys. Status Solidi A 64, 493 (1981).CrossRefGoogle Scholar
Appino, C. and Fiorillo, F.: A model for the reversible magnetization in amorphous alloys. J. Appl. Phys. 76, 5371 (1994).CrossRefGoogle Scholar
Morita, H., Obi, Y., and Fujimori, H.: Magnetic anisotropy of (Fe, Co, Ni)78Si10B12 alloy system. In Rapidly Quenched Metals, Steeb, S. and Warlimont, R., eds. (North-Holland, Amsterdam, 1985); p. 1283.Google Scholar
Kraus, L., Závěta, K., Heczko, O., Duhaj, P., Vlasák, G., and Schneider, J.: Magnetic anisotropy in as-quenched and stress-annealed amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. J. Magn. Magn. Mater. 112, 275 (1992).CrossRefGoogle Scholar
Alves, F. and Barrué, R.: Anisotropy and domain patterns of flash stress-annealed soft amorphous and nanocrystalline alloys. J. Mater. Eng. 254–255, 155 (2003).Google Scholar
Suzuki, Y., Haimovich, J., and Egami, T.: Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction. Phys. Rev. B 35, 2162 (1987).CrossRefGoogle ScholarPubMed
Fukunaga, H., Furukawa, N., Tanaka, H., and Nakano, M.: Nanostructured soft magnetic material with low loss and low permeability. J. Appl. Phys. 87, 7103 (2000).CrossRefGoogle Scholar
Magni, A., Bottauscio, O., Beatrice, C., Caprile, A., Ferrara, E., and Fiorillo, F.: Magnetization process in thin laminations up to 1 GHz. IEEE Trans. Magn. 48, 1363 (2012).CrossRefGoogle Scholar
Fiorillo, F., Bertotti, G., Appino, C., and Pasquale, M.: Soft magnetic materials. In Wiley Encyclopedia of Electrical and Electronics Engineering, Peterca, M., ed. (Wiley, Hoboken, New Jersey, 2016); p. 1.Google Scholar
Otsuka, I., Wada, K., Maeta, Y., Kadomura, T., and Yagi, M.: Magnetic properties of Fe-based amorphous powders with high-saturation induction produced by spinning water atomization process. IEEE Trans. Magn. 44, 3891 (2008).CrossRefGoogle Scholar
Mazaleyrat, F. and Varga, L.K.: Ferromagnetic nanocomposites. J. Magn. Magn. Mater. 215–216, 253 (2000).CrossRefGoogle Scholar
Shokrollahi, H. and Janghorban, K.: Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1 (2007).CrossRefGoogle Scholar
Füzer, J., Bednarčík, J., Kollár, P., and Roth, S.: Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe- based powders. J. Magn. Magn. Mater. 316, e834 (2007).CrossRefGoogle Scholar
Callegaro, L.: Electrical Impedance: Principles, Measurement, and Applications (CRC Press, Boca Raton, FA, 2013).Google Scholar
Betancourt, I.: Magnetization dynamics of amorphous ribbons and wires studied by inductance spectroscopy. Materials 4, 37 (2011).CrossRefGoogle Scholar
Füzer, J., Dobák, S., and Kollár, P.: Magnetization dynamics of FeCuNbSiB soft magnetic ribbons and derived powder cores. J. Alloy. Comp. 628, 335 (2015).CrossRefGoogle Scholar
Petzold, J.: Applications of nanocrystalline soft magnetic materials for modern electronic devices. Scr. Mater. 48, 895 (2003).CrossRefGoogle Scholar
Ahmadi, B., Mazaleyrat, F., Chaplier, G., Loyau, V., and LoBue, M.: Enhancement of medium frequency hysteresis loop measurements over a wide temperature range. IEEE Trans. Magn. 52, 6100404 (2016).CrossRefGoogle Scholar
Loyau, V., Lo Bue, M., and Mazaleyrat, F.: Measurement of magnetic losses by thermal method applied to power ferrites at high level of induction and frequency. Rev. Sci. Instrum. 80, 024703 (2009).CrossRefGoogle Scholar
Fiorillo, F.: Measurement and Characterization of Magnetic Materials (Elsevier-Academic Press, San Diego, CA, 2004); p. 388.Google Scholar
LoBue, M., Mazaleyrat, F., and Loyau, V.: Study of magnetic losses in Mn–Zn ferrites under biased and asymmetric excitation waveforms. IEEE Trans. Magn. 46, 451 (2010).CrossRefGoogle Scholar
Tellini, B., Giannetti, R., Robles, G., and Lizón-Martínez, S.: New method to characterize magnetic hysteresis in soft ferrites up to high frequencies. IEEE Trans. Instrum. Meas. 55, 311 (2006).CrossRefGoogle Scholar
Goldfarb, R.B. and Bussey, H.E.: Method for measuring complex permeability at radio frequencies. Rev. Sci. Instrum. 58, 624 (1987).CrossRefGoogle Scholar
Skutt, G.R. and Lee, F.C.: Characterization of dimensional effects in ferrite-core magnetic devices. In PESC Record. 27th Annual IEEE Power Electronics Specialists Conference 1996, Vol. 2 (1996); p. 1435. doi: 10.1109/PESC.1996.548770.Google Scholar
Magni, A., Fiorillo, F., Ferrara, E., Caprile, A., Bottauscio, O., and Beatrice, C.: Domain wall processes, rotations, and high-frequency losses in thin laminations. IEEE Trans. Magn. 48, 3796 (2012).CrossRefGoogle Scholar
Beatrice, C., Dobák, S., Ferrara, E., Fiorillo, F., Ragusa, C., Füzer, J., and Kollár, P.: Broadband magnetic losses of nanocrystalline ribbons and powder cores. J. Magn. Magn. Mater. 420, 317 (2016).CrossRefGoogle Scholar
Flohrer, S., Schäfer, R., McCord, J., Roth, S., Schultz, L., Fiorillo, F., Günther, W., and Herzer, G.: Dynamic magnetization process in nanocrystalline tape wound cores with transverse induced anisotropy. Acta Mater. 54, 4693 (2006).CrossRefGoogle Scholar
Chumakov, D., McCord, J., Schäfer, R., Schultz, L., Vinzelberg, H., Kaltofen, R., and Mönch, I.: Nanosecond time-scale switching of permalloy thin film elements studied by wide-field time-resolved Kerr microscopy. Phys. Rev. B 71, 014410 (2005).CrossRefGoogle Scholar
Stoppels, D.: Developments in soft magnetic power ferrites. J. Magn. Magn. Mater. 160, 323 (1996).CrossRefGoogle Scholar
Bertotti, G.: Hysteresis in Magnetism (Academic Press, San Diego, CA, 1998).Google Scholar
Bertotti, G.: General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24, 621 (1988).CrossRefGoogle Scholar
Bertotti, G.: Generalized Preisach model for the description of hysteresis and eddy current effects in metallic ferromagnetic materials. J. Appl. Phys. 69, 4608 (1991).CrossRefGoogle Scholar
Bertotti, G., Bottauscio, O., Chiampi, M., Fiorillo, F., Pasquale, M., and Repetto, M.: Power losses in magnetic laminations with hysteresis: Finite element modelling and experimental validation. J. Appl. Phys. 81, 5606 (1997).Google Scholar
Saotome, H. and Sakaki, Y.: Iron loss analysis of Mn–Zn ferrite cores. IEEE Trans. Magn. 33, 728 (1997).CrossRefGoogle Scholar
Tsutaoka, T., Kasagi, T., Hakateyama, K., and Koledintseva, M.Y.: Analysis of the permeability spectra of spinel ferrite composites using mixing rules. In IEEE International Symposium on Electromagnetic Compatibility (IEEE, Denver, Colorado, 2013); p. 545.Google Scholar
Roshen, W.A.: High-frequency tunneling magnetic loss in soft ferrites. IEEE Trans. Magn. 43 (2007).CrossRefGoogle Scholar
Drofenik, M., Znidarsic, A., and Zajc, I.: Highly resistive grain boundaries in doped MnZn ferrites for high frequency power supplies. J. Appl. Phys. 82, 333 (1997).CrossRefGoogle Scholar
Fiorillo, F., Beatrice, C., Bottauscio, O., Manzin, A., and Chiampi, M.: Approach to magnetic losses and their frequency dependence in Mn–Zn ferrites. Appl. Phys. Lett. 89, 122513 (2006).CrossRefGoogle Scholar
Dillon, J.F. Jr. and Earl, H.E. Jr.: Domain wall motion and ferromagnetic resonance in a manganese ferrite. J. Appl. Phys. 30, 202 (1959).CrossRefGoogle Scholar
Peuzin, J.C.: Les matériaux doux pour l’électronique haute frequence. In Magnétisme, Vol. II, du Trémolet de Lacheisserie, E., ed. (Presses Universitaires de Grenoble, Grenoble, France, 1999); p. 155.Google Scholar
de la Barrière, O., Appino, C., Fiorillo, F., Ragusa, C., Lecrivain, M., Rocchino, L., Ben Ahmed, H., Gabsi, M., Mazaleyrat, F., and Lo Bue, M.: Characterization and prediction of magnetic losses in soft magnetic composites under distorted induction waveforms. IEEE Trans. Magn. 49, 1318 (2013).CrossRefGoogle Scholar
Loyau, V., Wang, G.Y., LoBue, M., and Mazaleyrat, F.: An analysis of Mn–Zn ferrite microstructure by impedance spectroscopy, scanning transmission electron microscopy and energy dispersion spectrometry characterizations. J. Appl. Phys. 111, 053928 (2012).CrossRefGoogle Scholar
Fiorillo, F., Beatrice, C., Bottauscio, O., and Carmi, E.: Eddy current losses in Mn–Zn ferrites. IEEE Trans. Magn. 50, 6300109 (2014).CrossRefGoogle Scholar
Beatrice, C., Tsakaloudi, V., Dobák, S., Zaspalis, V., and Fiorillo, F.: Magnetic losses versus sintering process in Mn–Zn Ferrites. J. Magn. Magn. Mater. 429, 129 (2017).CrossRefGoogle Scholar
Seemann, K., Leiste, H., and Bekker, V.: New theoretical approach to the RF-dynamics of soft magnetic FeTaN films for CMOS components. J. Magn. Magn. Mater. 278, 200 (2004).CrossRefGoogle Scholar
Serpico, C., Mayergoyz, I.D., and Bertotti, G.: Analysis of eddy currents with Landau–Lifshitz equation as a constitutive relation. IEEE Trans. Magn. 37, 3546 (2001).CrossRefGoogle Scholar
Supplementary material: File

Ferrara et al. supplementary material

Appendices A-B

Download Ferrara et al. supplementary material(File)
File 49.7 KB