Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T17:17:59.316Z Has data issue: false hasContentIssue false

Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy

Published online by Cambridge University Press:  28 February 2018

Chaomin Zhang*
Affiliation:
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
Ehsan Vadiee
Affiliation:
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
Richard R. King
Affiliation:
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
Christiana B. Honsberg
Affiliation:
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Integration of the III–V material systems on Si is an enabling technology for achieving high efficiency heterojunction Si-based photovoltaic devices. Gallium phosphide (GaP) offers numerous potential electrical, optical, and material advantages over amorphous silicon (a-Si) for the realization of several heterojunction solar cell designs. In this paper, details are given for the growth, fabrication, and characterization of different n-GaP/n-Si heterojunction solar cells to explore the effect of GaP as a carrier-selective contact. The cell performance is promising with high Si bulk lifetime (∼2.2 ms at the injection level of 1015 cm−3) and an open-circuit voltage of 618 mV and an efficiency of 13.1% in this new solar cell design. In addition to GaP as an electron-selective contact, MoOx was successfully implemented as a hole-selective contact in the n-GaP/n-Si heterojunction solar cell, increasing efficiency to 14.1% by improving the short wavelength response. The Si bulk lifetime is maintained during growth of GaP on Si by two different approaches and their effects on GaP/Si solar cell performance are also presented.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sam Zhang

References

REFERENCES

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 25, 3 (2017).Google Scholar
Wurfel, U., Cuevas, A., and Wurfel, P.: Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461 (2015).Google Scholar
Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., and Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).Google Scholar
Sakata, I. and Kawanami, H.: Band discontinuities in gallium phosphide/crystalline silicon heterojunctions studied by internal photoemission. Appl. Phys. Express 1, 91201 (2008).CrossRefGoogle Scholar
Limpert, S., Ghosh, K., Wagner, H., Bowden, S., Honsberg, C., Goodnick, S., Bremner, S., Ho-Baillie, A., and Green, M.: Results from coupled optical and electrical sentaurus TCAD models of a gallium phosphide on silicon electron carrier selective contact solar cell. In 2014 IEEE 40th Photovoltaic Specialist Conference (IEEE, Denver, Colorado 2014); p. 836.CrossRefGoogle Scholar
Feifel, M., Rachow, T., Benick, J., Ohlmann, J., Janz, S., Hermle, M., Dimroth, F., and Lackner, D.: Gallium phosphide window layer for silicon solar cells. IEEE J. Photovolt. 6, 384 (2016).Google Scholar
Grassman, T.J., Carlin, J.A., Galiana, B., Yang, F., Mills, M.J., and Ringel, S.A.: MOCVD-grown GaP/Si subcells for integrated III–V/Si multijunction photovoltaics. IEEE J. Photovolt. 4, 972 (2014).Google Scholar
Feifel, M., Ohlmann, J., Benick, J., Rachow, T., Janz, S., Hermle, M., Dimroth, F., Belz, J., Beyer, A., Volz, K., and Lackner, D.: MOVPE grown gallium phosphide–silicon heterojunction solar cells. IEEE J. Photovolt. 7, 502 (2017).CrossRefGoogle Scholar
Beck, E.E., Blakeslee, A.E., and Gessert, T.A.: Application of GaP/Si heteroepitaxy to cascade solar cells. Sol. Cell. 24, 205 (1988).Google Scholar
Wagner, H., Ohrdes, T., Dastgheib-Shirazi, A., Puthen-Veettil, B., König, D., and Altermatt, P.P.: A numerical simulation study of gallium–phosphide/silicon heterojunction passivated emitter and rear solar cells. J. Appl. Phys. 115, 44508 (2014).Google Scholar
Zhang, C., Faleev, N.N., Ding, L., Boccard, M., Bertoni, M., Holman, Z., King, R.R., and Honsberg, C.B.: Hetero-emitter GaP/Si solar cells with high Si bulk lifetime. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 19501953.Google Scholar
Green, M.A.: The passivated emitter and rear cell (PERC): From conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190 (2015).CrossRefGoogle Scholar
García-Tabarés, E., Carlin, J.A., Grassman, T.J., Martín, D., Rey-Stolle, I., and Ringel, S.A.: Evolution of silicon bulk lifetime during III–V-on-Si multijunction solar cell epitaxial growth. Prog. Photovoltaics Res. Appl. 24, 634 (2016).CrossRefGoogle Scholar
Varache, R., Darnon, M., Descazeaux, M., Martin, M., Baron, T., and Muñoz, D.: Evolution of bulk c-Si properties during the processing of GaP/c-Si heterojunction cell. Energy Procedia 77, 493 (2015).Google Scholar
Warren, E.L., Kibbler, A.E., France, R.M., Norman, A.G., Olson, J.M., and McMahon, W.E.: Investigation of GaP/Si Heteroepitaxy on MOCVD Prepared Si(100) Surfaces. In 2015 IEEE 42nd Photovoltaic Specialis Conference (IEEE, New Orleans, 2015); pp. 14.Google Scholar
Ding, L., Zhang, C., Nærland, T.U., Faleev, N., Honsberg, C., and Bertoni, M.I.: Silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial III–V material growth. Energy Procedia 92, 617 (2016).Google Scholar
Ding, L., Zhang, C., Norland, T.U., Faleev, N., Honsberg, C., and Bertoni, M.: On the source of silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial growth of III-V materials. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 20482051.Google Scholar
Zhang, C., Kim, Y., Faleev, N.N., and Honsberg, C.B.: Improvement of GaP crystal quality and silicon bulk lifetime in GaP/Si heteroepitaxy. J. Cryst. Growth 475, 83 (2017).Google Scholar
Ohlmann, J., Feifel, M., Rachow, T., Benick, J., Janz, S., Dimroth, F., and Lackner, D.: Influence of metal–organic vapor phase epitaxy reactor environment on the silicon bulk lifetime. IEEE J. Photovolt. 6, 1668 (2016).Google Scholar
Bevk, J., Mannaerts, J.P., Feldman, L.C., Davidson, B.A., and Ourmazd, A.: Ge–Si layered structures: Artificial crystals and complex cell ordered superlattices. Appl. Phys. Lett. 49, 286 (1986).CrossRefGoogle Scholar
Takagi, Y., Yonezu, H., Samonji, K., Tsuji, T., and Ohshima, N.: Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si(100) substrates. J. Cryst. Growth 187, 42 (1998).Google Scholar
Ishizaka, A. and Shiraki, Y.: Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666 (1986).Google Scholar
Zhang, C., Ding, L., Boccard, M., Nærland, T.U., Faleev, N., Bowden, S., Bertoni, M., and Honsberg, C.: Practical Approaches to Mitigate Minority-Carrier Lifetime Degradation in Si Wafers (submitted).Google Scholar
Khedher, N., Hajji, M., Hassen, M., Ben Jaballah, A., Ouertani, B., Ezzaouia, H., Bessais, B., Selmi, A., and Bennaceur, R.: Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Sol. Energy Mater. Sol. Cells 87, 605 (2005).Google Scholar
Herasimenka, S.Y., Dauksher, W.J., Boccard, M., and Bowden, S.: ITO/SiO x :H stacks for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 158, 98 (2016).Google Scholar
Street, R.A., Biegelsen, D.K., and Knights, J.C.: Defect states in doped and compensated a-Si:H. Phys. Rev. B 24, 969 (1981).Google Scholar
Bivour, M., Temmler, J., Steinkemper, H., and Hermle, M.: Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34 (2015).Google Scholar
Battaglia, C., de Nicolás, S.M., De Wolf, S., Yin, X., Zheng, M., Ballif, C., and Javey, A.: Silicon heterojunction solar cell with passivated hole selective MoO x contact. Appl. Phys. Lett. 104, 113902 (2014).CrossRefGoogle Scholar
McIntosh, K.R. and Baker-Finch, S.C.: OPAL 2: Rapid optical simulation of silicon solar cells. In 2012 38th IEEE Photovoltaic Specialists Conference (IEEE, Austin, Texas, 2012); pp. 000265000271.Google Scholar
Holman, Z.C., Descoeudres, A., Barraud, L., Fernandez, F.Z., Seif, J.P., De Wolf, S., and Ballif, C.: Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7 (2012).Google Scholar
Battaglia, C., Yin, X., Zheng, M., Sharp, I.D., Chen, T., McDonnell, S., Azcatl, A., Carraro, C., Ma, B., Maboudian, R., Wallace, R.M., and Javey, A.: Hole selective MoO x contact for silicon solar cells. Nano Lett. 14, 967 (2014).Google Scholar