Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T17:47:30.109Z Has data issue: false hasContentIssue false

Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN

Published online by Cambridge University Press:  31 January 2011

M. R. Ranade
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Thermochemistry Facility, One Shields Avenue, Davis, California 95616
F. Tessier
Affiliation:
UMR CNRS 6512 “Verres et Céramiques,” Institut de Chimie de Rennes, Universite’ de Rennes 1,F-35042 Rennes Cedex, France
A. Navrotsky*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Thermochemistry Facility, One Shields Avenue, Davis, California 95616
R. Marchand
Affiliation:
UMR CNRS 6512 “Verres et Céramiques,” Institut de Chimie de Rennes, Université de Rennes 1, F-35042 Rennes Cedex, France
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

The standard enthalpy of formation of InN at 298 K has been determined using high-temperature oxidative drop solution calorimetry in a molten sodium molybdate solvent at 975 K. Calorimetric measurements were performed on six InN samples with varying nitrogen contents. The samples were characterized using x-ray diffraction, chemical analysis, electron microprobe analysis, and Brunauer–Emmett–Teller surface area measurement. The variation of the enthalpy of drop solution (kJ/g) with nitrogen content is approximately linear. The data, when extrapolated to stoichiometric InN, yield a standard enthalpy of formation from the elements of ?28.6 ± 9.2 kJ/mol. The relatively large error results from the deviation of individual points from the straight line rather than uncertainties in each set of data for a given sample. This new directly measured enthalpy of formation is in good agreement with the old combustion calorimetric result by Hahn and Juza (1940). However, this calorimetric enthalpy of formation is significantly different from the enthalpy of formation values derived from the temperature dependence of the apparent decomposition pressure of nitrogen over InN. A literature survey of the enthalpies of formation of III–N nitride compounds is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nakamura, S., J. Mater. Res. 14, 2716 (1999).CrossRefGoogle Scholar
2Balkas, C.M. and Davis, R.F., J. Am. Ceram. Soc. 79, 2309 (1996).CrossRefGoogle Scholar
3Fischer, R.A., Sussek, H., Miehr, A., Pritzkow, H., and Herdtweck, E., J. Organomet. Chem. 548, 73 (1997).CrossRefGoogle Scholar
4Janik, J.F., Wells, R.L., Coffer, J.L., John, J.V.St., Pennington, W.T., and Schimek, G.L., Chem. Mater. 10, 1613 (1998).CrossRefGoogle Scholar
5Feiler, D., Williams, R., Talin, A., Yoon, H., and Goorsky, M.S., J. Cryst. Growth 171, 12 (1997).CrossRefGoogle Scholar
6Mackenzie, J.D., Abernathy, C.R., Stewart, J.D., and Muhr, G.T., J. Cryst. Growth 164, 143 (1996).CrossRefGoogle Scholar
7Kim, J.Y., Kumta, P.N., Phillips, B.L., and Risbud, S.H., J. Phys. Chem. B. 104, 7895 (2000).CrossRefGoogle Scholar
8Argoitia, A., Hayman, C.C., Angus, J.C., Wang, L., Dyck, J.S., and Kash, K., Appl. Phys. Lett. 70, 179 (1997).CrossRefGoogle Scholar
9Porowski, S., Jun, J., Krukowski, S., Grzegory, I., Leszczynski, M., Suski, T., Teisseyre, H., Foxon, C.T., and Korakakis, D., Physica B 265, 295 (1999).CrossRefGoogle Scholar
10Paszkowicz, W., Powder Diffr. 14, 258 (1999).CrossRefGoogle Scholar
11Siwiec, J., Sokolowska, A., Olszyna, A., Dwilinski, R., Kaminska, M., and Konwerska-Hrabowska, , J. Nanstruct. Mater. 10, 625 (1998).CrossRefGoogle Scholar
12Khan, M.A., Bhattaraj, A., Kuxnia, J.N., and Olson, D.T., Appl. Phys. Lett. 63, 1214 (1993).CrossRefGoogle Scholar
13Joshkin, V.A., Roberts, J.C., Piner, E.L., Behbehani, M.K., McIntosh, F.G., Wang, L., Lin, S., Shmagin, I., Krishnakutty, S., Kolbas, R.M., El-Masry, N.A., and Bedair, S.M., in Gallium Nitride and Related Materials II, edited by Abernathy, C.R., Amano, H., and Zolper, J.C. (Mater. Res. Symp. Proc. 468, Pittsburgh, PA, 1997), p. 13.Google Scholar
14Chen, H., Chen, K., Drabold, D.A., and Kordesch, M.E., Appl. Phys. Lett. 77, 1117 (2000).CrossRefGoogle Scholar
15Navrotsky, A., J. Alloys Compd. (submitted).Google Scholar
16Elder, S.H., DiSalvo, F.J., Topor, L., and Navrotsky, A., Chem. Mater. 5, 1545 (1993).CrossRefGoogle Scholar
17McHale, J.M., Kowach, G.R., Navrotsky, A., and DiSalvo, F.J., Chem. Eur. J. 2, 1514 (1996).CrossRefGoogle Scholar
18McHale, J.M., Navrotsky, A., Kowach, G.R., Balbarin, V.E., and DiSalvo, F.J., Chem. Mater. 9, 1358 (1997).Google Scholar
19McHale, J.M., Navrotsky, A., and DiSalvo, F.J., Chem. Mater. 11, 1148 (1999).CrossRefGoogle Scholar
20Tessier, F., Navrotsky, A., Niewa, R., Leineweber, A., Jacobs, H., Kikkawa, S., Takahashi, M., Kanamaru, F., and DiSalvo, F.J., Solid State Sci. 2, 457 (2000).CrossRefGoogle Scholar
21Tessier, F., Ranade, M.R., Navrotsky, A., Niewa, R., DiSalvo, F.J., Leineweber, A., and Jacobs, H., Z. Anorg. Allg. Chem. 627, 194 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
22Liang, J., Topor, L., Navrotsky, A., and Mitomo, M., J. Mater. Res. 14, 1959 (1999).CrossRefGoogle Scholar
23Liag, J., Navrotsky, A., Ludwig, T., Seifert, S.F., and Aldinger, F., J. Mater. Res. 14, 1181 (1999).Google Scholar
24Liang, J., Navrotsky, A., Leppert, V.J., Paskowitz, M.J., Risbud, S.H., Ludwig, T., Seifert, S.F., Aldinger, F., and Mitomo, M., J. Mater. Res. 14, 4630 (1999).CrossRefGoogle Scholar
25Navrotsky, A., Risbud, S.H., Liang, J., and Leppert, V.J., J. Phys. Chem. B 101, 9433 (1997).CrossRefGoogle Scholar
26Molodetsky, I., Navrotsky, A., Lajavardi, M., and Brune, A., J. Phys. Chem. 207, 59 (1998).Google Scholar
27Molodetsky, I., Navrotsky, A., DiSalvo, F.J., and Lerch, M., J. Mater. Res. 15, 2558 (2000).CrossRefGoogle Scholar
28Tessier, F., Le Sauze, A., Marchand, R., and Navrotsky, A., in Solid-State Chemistry of Inorganic Materials II, edited by Kauzlarich, S.M., McCarron, E.M. III, Sleight, A.W., and Zur Loye, H-C. (Mater. Res. Soc. Symp. Proc. 547, Warrendale, PA, 1999), p. 389.Google Scholar
29Tessier, F., Le Sauze, A., Marchand, R., and Navrotsky, A., Chem. Mater. 1, 148 (2000).CrossRefGoogle Scholar
30Ranade, M.R., Tessier, F., Navrotsky, A., Leppert, V.J., Risbud, S.H., DiSalvo, F.J., and Balkas, C.M., J. Phys. Chem. B 104, 4060 (2000).CrossRefGoogle Scholar
31Hahn, H. and Juza, R., Z. Anorg. Chem. 244, 111 (1940).CrossRefGoogle Scholar
32Barin, I., Thermochemical Data of Pure Substances, 2nd ed. (VCH, Weinheim, Germany, 1993).Google Scholar
33Glushko, V.P., Termicheskie Konstanty Veshchestv, Tom V (VINITI, Moscow, Russia, 1971).Google Scholar
34Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm, R.H., Selected Values of Chemical Thermodynamic Properties, NBS Tech. Note 270-3 (NBS, Washington, DC, 1968).Google Scholar
35Kubaschewski, O. and Alcock, C.B., Metallurgical Thermodynam-ics, 5th ed. (Permagon, Oxford, United Kingdom, 1979).Google Scholar
36Kubaschewski, O., Knacke, O., and Hesselmann, K., Thermochemical Properties of Inorganic Substances, 2nd ed. (Springer Verlag Stahleisen, Berlin, 1991).Google Scholar
37Vorobev, A.M., Evseeva, G.V., and Zenkevich, L.V., Russ. J. Phys. Chem. 47, 1616 (1973).Google Scholar
38Edgar, J.H., Properties of Group III Nitrides, EMIS Datareview Series No. 11 (Inspec, London, United Kingdom, 1994).Google Scholar
39MacChesney, J.B., Bridenbaugh, P.M., and O’Connor, P.B., Mater. Res. Bull. 5, 783 (1970).CrossRefGoogle Scholar
40Vorobev, A.M., Evseeva, G.V., and Zenkevich, L.V., Russ. J. Phys. Chem. 45, 1501 (1971).Google Scholar
41Jones, R.D. and Rose, K., J. Phys. Chem. Solids 48, 587 (1984).CrossRefGoogle Scholar
42Gordienko, S.P. and Fenochka, B.V., Russ. J. Phys. Chem. 51, 315 (1977).Google Scholar
43Jones, R.D. and Rose, K., CALPHAD 8, 343 (1984).CrossRefGoogle Scholar
44Grzegory, I., Krukowski, S., Jun, J., Bockowski, M., Wroblewski, M., and Porowski, S., Proc. XX AIRAPT Conf., Colorado Springs, CO (AIP Press, New York, 1993).Google Scholar
45Grzegory, I., Jun, J., Bockowski, M., Krukowski, S., Wroblewski, M., Lucznik, B., and Porowski, S., J. Phys. Chem. Solids 56, 639 (1995).CrossRefGoogle Scholar
46Krukowski, S., Diamond Relat. Mater. 6, 1515 (1997).CrossRefGoogle Scholar
47Krukowski, S., Witek, A., Adamczyk, J., Jun, J., Bockowski, M., Grzegory, I., Lucznik, B., Nowak, G., Wroblewski, M., Presz, A., Gierlotka, S., Stelmach, S., Palosz, B., Porowski, S., and Zinn, P., J. Phys. Chem. Solids 59, 289 (1998).CrossRefGoogle Scholar
48Karpinski, J. and Porowski, S., J. Cryst. Growth 66, 1 (1984).CrossRefGoogle Scholar
49Przhevalskii, I.N., Karpov, S.Yu., and Makarov, Yu.N., MRS Internet J. Nitride Semicond. Res. 30, 1 (1998).Google Scholar
50Kireev, V.A., Methods of Applied Calculations in Thermodynamic of Chemical Reactions (Chimia, Moscow, Russia, 1970).Google Scholar
51Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
52Navrotsky, A., Phys. Chem. Miner. 2, 89 (1977).CrossRefGoogle Scholar
53Holland, T.J.B. and Redfern, S.A.T., Min. Mag. 61, 65 (1997).CrossRefGoogle Scholar
54Dyck, J.S., Kash, K., Hayman, C.C., Argoitia, A., Grossner, M.T., Angus, J.C., and Chou, W., J. Mater. Res. 14, 2411 (1999).CrossRefGoogle Scholar
55Trainor, J.W. and Rose, K., J. Electron. Mater. 3, 821 (1974).CrossRefGoogle Scholar
56Munir, Z.A. and Searcy, A.W., J. Chem. Phys. 42, 4223 (1965).CrossRefGoogle Scholar
57Lyutaya, M.D. and Bukhanevich, V.F., Russ. J. Inorg. Chem. 7, 1290 (1962).Google Scholar
58Neugebauer, C.A. and Margrave, J.L., Z. Anorg. Allg. Chem. 290, 82 (1957).CrossRefGoogle Scholar
59Mah, A.D., King, E.G., Weller, W.W., and Christensen, A.U., U.S. Bur. Mines RI 5716 (1961).Google Scholar
60Satoh, S., Sci. Pap. Inst. Phys. Chem. Res. 29, 19 (1936).Google Scholar
61Hildenbrand, D.L. and Hall, W.F., J. Phys. Chem. 67, 888 (1963).CrossRefGoogle Scholar
62Gordienko, S.P. and Fenochka, B.V., Poroshk. Metall. 6, 75 (1981).Google Scholar
63Leitner, L., Stejskal, J., and Voňka, P., Mater. Lett. 28, 197 (1996).CrossRefGoogle Scholar
64Madar, R., Jacob, G., Hallais, J., and Fruchart, R., J. Cryst. Growth 31, 197 (1975).CrossRefGoogle Scholar
65Karpinski, J. and Porowski, S., J. Cryst. Growth 66, 11 (1984).CrossRefGoogle Scholar
66Robie, R.A. and Hemingway, B.S., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geol. Survey Bull. 2131 (U.S. Geological Survey, Washington, DC, 1995).Google Scholar