Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T04:22:46.032Z Has data issue: false hasContentIssue false

Aligned carbon nanotube growth under oxidative ambient

Published online by Cambridge University Press:  31 January 2011

Anyuan Cao*
Affiliation:
Department of Mechanical Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
Xianfeng Zhang
Affiliation:
Department of Mechanical Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
Cailu Xu
Affiliation:
Department of Mechanical Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
Ji Liang
Affiliation:
Department of Mechanical Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
Dehai Wu
Affiliation:
Department of Mechanical Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
Bingqing Wei
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon nanotubes (CNTs) are always produced under a reductive ambient with hydrogen present using the chemical vapor deposition method. Oxidative media, such as carbon dioxide and oxygen, could damage the tubular structures by opening the nanotube ends or etching the tube walls. Here we report the synthesis of aligned defective, but clean, CNTs in the presence of water vapor. The tube walls were found broken as well as the tube ends. CNTs with a large amount of exposed broken sites on their tube walls have potential applications in many areas such as energy storage.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Treacy, M.M.J., Ebbesen., T.W., and Gibson., J.M.,Nature 381, 678 (1996).Google Scholar
2.Dai., H.J., Wong., E.W., and Lieber., C.M., Science 272, 523 (1996).Google Scholar
3.Hone, J., Whitney, M., Piskoti, C., and Zettl, A., Phys.Rev.B 59, R2514 (1999).Google Scholar
4.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
5.Tans., S.J., Devoret., M.H., Dai, H., Thess, A., Smalley., R.E., Geerligs., L.J., and Dekker, C., Nature 386, 474 (1997).Google Scholar
6.Dillon., A.C., Jones., K.M., Bekkedahl., T.A., Kiang., C.H., Bethune., D.S., and Heben., M.J., Nature 386, 377 (1997).Google Scholar
7.Murakami, H., Hirakawa, M., Tanaka, C., and Yamakawa, H., Appl.Phys.Lett. 76, 1776 (2000).CrossRefGoogle Scholar
8.Choi., W.B., Chung., D.S., Kang., J.H., Kim., H.Y., Jin., Y.W., Han., I.T., Lee., Y.H., Jung., J.E., Lee., N.S., Park., G.S., and Kim., J.M., Appl.Phys.Lett. 75, 3129 (1999).Google Scholar
9.Kong, J., Franklin., N.R., Zhou., C.W., Chapline., M.G., Peng, S., Cho, K., and Dai., H.J., Science 287, 622 (2000).Google Scholar
10.Wood., J.R. and Wagner., H.D., Appl.Phys.Lett. 76, 2883 (2000).CrossRefGoogle Scholar
11.Ren., Z.F., Huang., Z.P., Xu., J.W., Wang., J.H., Bush, P., Siegal., M.P., and Provencio., P.N., Science 282, 1105(1998).CrossRefGoogle Scholar
12.Fan., S.S., Chapline., M.G., Fanklin., N.R., Tombler., T.W., Cassell., A.M., and Dai., H.J., Science 283, 512 (1999).Google Scholar
13.Tsang., S.C., Harris, P.J.F., and Green, M.L.H., Nature 362, 520(1993).CrossRefGoogle Scholar
14.Ajayan., P.M., Ebbesen., T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature 362, 522(1993).CrossRefGoogle Scholar
15.Rao, C.N.R., Sen, R., Satishkumar., B.C., and Govindaraj, A., Chem.Commun. 1525 (1998).Google Scholar
16.Andrews, R., Jaeques, D., Rao., A.M., Derbyshire, F., Qian, D., Fan, X., Dickey., E.C., and Chen, J., Chem.Phys.Lett. 303, 467 (1999).CrossRefGoogle Scholar
17.Cao., A.Y., Ci., L.J., Wu., G.W., Wei., B.Q., Xu., C.L., Liang, J., and Wu., D.H., Carbon 39, 152 (2001).CrossRefGoogle Scholar
18.Tsang., S.C., Chen., Y.K., Harris, P.J.F., and Green, M.L.H., Nature 372, 159 (1994).Google Scholar