Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:38:28.083Z Has data issue: false hasContentIssue false

Adhesion of polymer–inorganic interfaces by nanoindentation

Published online by Cambridge University Press:  31 January 2011

Min Li
Affiliation:
Department of Chemical Engineering and Materials Sciences, University of Minnesota, 421 Washington Ave S.E., Minneapolis, Minnesota 55455
C. Barry Carter
Affiliation:
Department of Chemical Engineering and Materials Sciences, University of Minnesota, 421 Washington Ave S.E., Minneapolis, Minnesota 55455
Marc A. Hillmyer
Affiliation:
Department of Chemistry, University of Minnesota, 421 Washington Ave S.E., Minneapolis, Minnesota 55455
William W. Gerberich*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave S.E., Minneapolis, Minnesota 55455
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanoindentation combined with atomic force microscopy was applied to measure the fracture toughness of polystyrene/glass interfaces. Film delamination occurs when the inelastic penetration depth approximately equals or exceeds the film thickness. The delamination size was accurately measured using atomic force microscopy. Using multilayer indentation and annular-plate analyses, the interfacial fracture toughness was then assessed. The values obtained from the two analyses are in good agreement with the fracture toughness of the interface being approximately 350 mJ/m2. By appropriate fracture surface characterization, it was shown that fracture occurs along the polystyrene/glass interface. Crack arrest marks were observed, and their possible cause discussed. On the basis of the morphology of the fracture surface, the fracture toughness was also evaluated using a process zone analysis. The result agrees well with those obtained from the other two analyses.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grove, N.R., Kohl, P. A., Allen, S.A.B., Jayaraman, S., and Shick, R., J. Polym. Sci., Part B: Polym. Phys. 37, 3003 (1999).Google Scholar
2.Liou, H., Ho, P. S., and McKerrow, A., “The Thermal and Mechanical Properties of Perfluorocyclobutate Aromatic Ether Polymers,” in Dielectric Material Integration for Microelectronics, edited by Brown, W. D., Ang, S. S., Loboda, M., Sammakia, B., Singh, R., and Rathore, H.S. (The Electrochemical Society, Inc., Pennington, NJ, 1998), p. 113.Google Scholar
3.Ree, M., Park, Y. H., Shin, T. J., Nunes, T. L., and Volksen, W., Polymer 41, 2105 (2000).CrossRefGoogle Scholar
4.Tummala, R. R., Rymaszewski, E. J., and Klopfenstein, A.G.Microelectronics Packaging Handbook, edited by Tummala, R. R., Rymaszewski, E. J., and Klopfenstein, A. G., (Chapman & Hall, New York, 1997).Google Scholar
5.Ree, M., Goh, W. H., Park, J-W., Lee, M-H., and Rhee, S. B., in Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics, edited by Lu, T-M., Murarka, S. P., Kuan, T. K., and Ting, C.H (Mater. Res. Soc. Symp. 381, Pittsburgh, PA, 1995), p. 71Google Scholar
6.Chen, Z., Cotterell, B., and Chen, W. T., Surf. Interface Anal. 28, 146 (1999).3.0.CO;2-N>CrossRefGoogle Scholar
7.Marshall, D.B. and Evans, A. G., J. Appl. Phys. 56, 2632 (1984).CrossRefGoogle Scholar
8.Matthewson, M. J., Appl. Phys. Lett. 49, 1426 (1986).Google Scholar
9.Rosenfeld, L. G., Ritter, J. E., Lardner, T. J., and Lin, M. R., J. Appl. Phys. 67, 3291 (1990).Google Scholar
10.Kriese, M. D., Moody, N. R., and Gerberich, W. W., J. Mater. Res. 14, 3007 (1999).CrossRefGoogle Scholar
11.Swadener, J.G. and Liechti, K. M., J. Appl. Mech. 65, 25 (1998).CrossRefGoogle Scholar
12.Sharma, R., Lin, J., and Drye, J., J. Adhes. 40, 257 (1993).CrossRefGoogle Scholar
13.Dai, C., Kramer, E. J., Washiyama, J., and Hui, C., Macromolecules 29, 7536 (1996).Google Scholar
14.Thouless, M. D., Acta Metall. 36, 3131 (1988).Google Scholar
15.Tymiak, N. I., Li, M., Volinsky, A. A., Katz, Y., and Gerberich, W. W., in Materials Reliability in Microelectronics IX, edited by Volkert, C. A., Verbruggen, A. H., and Brown, D.D. (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 269.Google Scholar
16.Turner, M.R. and Evans, A. G., Acta Mater. 44, 863 (1996).Google Scholar
17.Kriese, M. D., Moody, N. R., and Gerberich, W. W., J. Mater. Res. 14, 3019 (1999).CrossRefGoogle Scholar
18.Bagchi, A. and Evans, A. G., Thin Solid Films 286, 203 (1996).CrossRefGoogle Scholar
19.Smith, J. W., Kramer, E. J., Xiao, F., and Hui, C., J. Mater. Sci. 28, 4234 (1993).Google Scholar
20.Wu, T. W., J. Mater. Res. 6, 407 (1991).Google Scholar
21.Bhushan, B., Kulkarni, A. V., Bonin, W., and Wyrobek, J. T., Philos. Mag. A 74, 1117 (1996).Google Scholar
22.Oliver, W.C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
23.Gerberich, W. W., Yu, W., Kramer, D., Strojny, A., Bahr, D., Lilleodden, E., and Nelson, J., J. Mater. Res. 13, 421 (1998).Google Scholar
24.Li, M., Carter, C. B., and Gerberich, W. W., (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q7.21.1.Google Scholar
25.Hutchinson, J.W. and Suo, Z., Mixed Mode Cracking in Layered Materials, edited by Hutchinson, J.W. and Hu, T. Y., (Academic Press, New York), Adv. Appl. Mech. 29, 63 (1991).Google Scholar
26.Hoffman, W. R., The Mechanical Properties of Thin Condensed Films, in Physics of Thin Films, edited by Hass, G. and Thun, R.E. (Academic, New York, 1966), Vol. 3, p. 211.Google Scholar
27.Callister, W. D., Jr., Materials Science and Engineering an Introduction (John Wiley & Sons, New York, 1999).Google Scholar
28.Brandrup, J. and Immergut, E.H.Polymer Handbook, edited by Brandrup, J. and Immergut, E. H., (Wiley-Interscience, New York, 1989).Google Scholar
29.Marsh, D. M., Proc. R. Soc. A 279, 420 (1963).Google Scholar
30.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).Google Scholar
31.Ma, Q. and Clarke, D. R., J. Mater. Res. 1C, 853 (1995).Google Scholar
32.Tymiak, N. and Gerberich, W., Adhesion and Interfacial Degradation, in ASM Handbook Volume 8 Mechanical Testing and Evaluation, edited by Kuhn, H. and Medlin, D. (ASM International, Materials Park, OH, 2000), p. 298.Google Scholar
33.Swadener, J. G., Liechti, K. M., and Lozanne, A.L.d., J. Mech. Phys. Solids 47, 223 (1999).Google Scholar
34.Dupre, A., Mechanical Theory of Heat (Gauthier-Villars, Paris, France, 1869).Google Scholar
35.Reiter, G., Langmuir 9, 1344 (1993).CrossRefGoogle Scholar
36.Volinsky, A.A. and Gerberich, W. W., in Materials Reliability in Microelectronics IX, edited by Volkert, C. A., Verbruggen, A. H., and Brown, D.D. (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 275.Google Scholar
37.Volinsky, A. A., The Role of Geometry and Plasticity in Thin Ductile Film Adhesion, Ph. D. Thesis, University of Minnesota (2000).Google Scholar
38.Argon, A. S., Hannoosh, J. G., and Salama, M. M., Initiation and Growth of Crazes in Glassy Polymers, in Fracture 1977 Advances in Research on the Strength and Fracture of Materials Vol. 1, edited by Taplin, D.M.R. (Pergamon Press Inc., New York, 1978), p. 445.Google Scholar
39.Israel, S. J., Kantamneni, C. S., and Gerberich, W. W., A Dugdale-Barenblatt Equilibrium Model for Crazes in Glassy Polymers, in Mechanical Behavior of Materials, edited by Miller, K.J. and Smith, R.F. (Pergamon Press, New York, 1979), Vol. V3, p. 393.Google Scholar
40.Gerberich, W. W., Interaction of Microstructure and Mechanism in Defining KIc, KIscc or △Kth Values, in Fracture: Interactions of Microstructure, Mechanisms and Mechanics, edited by Wells, J.M. and Landes, J.D. (Metallurgical Society of AIME, Warrendale, PA, 1984), p. 49.Google Scholar
41.Gerberich, W. W., Int. J. Fract. 13, 535 (1977).Google Scholar
42.Dugdale, D. S., J. Mech. Phys. Solids 8, 100 (1960).Google Scholar
43.Barenblatt, G. I., Adv. Appl. Mech. 7, 55 (1962).CrossRefGoogle Scholar
44.Ward, I. M., Mechanical Properties of Solid Polymers, 2nd ed. (John Wiley & Sons, Chichester, United Kingdom, 1983).Google Scholar
45.Nielsen, L.E. and Landel, R. F., Mechanical Properties of Polymers and Composites (Marcel Dekker, Inc., New York, 1994).Google Scholar
46.Jackson, G.B. and Ballman, R. L., SPE J. 16, 1147 (1960).Google Scholar
47.Suo, Z. and Hutchinson, J. W., Int. J. Fract. 43, 1 (1990).Google Scholar
48.Evans, A. G., Dalgleish, B. J., He, M., and Hutchinson, J. W., Acta Metall. 37, 3249 (1989).Google Scholar
49.Liechti, K.M. and Chai, Y-S., J. Appl. Mech. 58, 680 (1991).CrossRefGoogle Scholar
50.Strojny, A., Moody, N. R., Emerson, J. A., Even, W. R. Jr, and Gerberich, W. W., in Interfaces, Adhesion and Processing in Polymer Systems, edited by Anastasiadis, S. H., Karim, A., and Ferguson, G.S. (Mater. Res. Soc. Symp. Proc. 629, Warrendale, PA, 2000), p. FF5.13.1.Google Scholar
51.Begley, M.R. and Hutchinson, J. W., J. Mech. Phys. Solids 46, 2049 (1998).Google Scholar
52.Grunlan, J. C., Xia, X., Rowenhorst, D., and Gerberich, W. W., Rev. Sci. Instrum. (in press).Google Scholar