Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T17:56:55.378Z Has data issue: false hasContentIssue false

2D AlB2 flakes for epitaxial thin film growth

Published online by Cambridge University Press:  21 June 2018

Mohammad Humood
Affiliation:
Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
Jacob L. Meyer
Affiliation:
ATSP Innovations, Champaign, Illinois 61820, USA
Stanislav V. Verkhoturov
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
Tanil Ozkan
Affiliation:
Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
Michael Eller
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
Emile A. Schweikert
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
James Economy
Affiliation:
ATSP Innovations, Champaign, Illinois 61820, USA
Andreas A. Polycarpou*
Affiliation:
Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, we report on the mechanical cleavage of conductive metal-based aluminum diboride (AlB2) flakes. The cleavage resulted in a highly single crystalline 2D material and had an atomically flat and smooth surface as shown by atomic force microscopy (AFM) and secondary ion mass spectrometry. Nanoindentation and AFM imaging of freshly cleaved specimens revealed sub-nm roughness and 30% improvement in the nanomechanical properties as compared to the as-grown AlB2 flakes. Once exposed to ambient air, the cleaved AlB2 flakes formed a superficial oxidation layer of less than 1 nm thickness within 5 min. Owing to the smooth surface, ultra-thin and stable oxide layer, and the excellent mechanical and electrical characteristics of AlB2, the cleaved flakes present an ideal 2D material for emerging applications in microfabrication such as the growth of epitaxial thin films. To prove the sub-nm surface characteristics of cleaved AlB2, a 10-nm thick TiO2 film was deposited on a freshly cleaved AlB2 using atomic layer deposition. Surface roughness and compositional consistency of this film were compared with a control sample deposited on Si. The TiO2 film on AlB2 showed a distinct thin interface layer with fewer defects than TiO2 on Si and superior flatness.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).CrossRefGoogle ScholarPubMed
Pan, W.Y., Bao, Q.W., Mao, Y.J., Liu, B.H., and Li, Z.P.: Low-temperature synthesis of nanosized metal borides through reaction of lithium borohydride with metal hydroxides or oxides. J. Alloys Compd. 651, 666 (2015).CrossRefGoogle Scholar
Sun, X., Liu, X., Yin, J., Yu, J., Li, Y., Hang, Y., Zhou, X., Yu, M., Li, J., Tai, G., and Guo, W.: Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017).CrossRefGoogle Scholar
Mounet, N., Gibertini, M., Schwaller, P., Campi, D., Merkys, A., Marrazzo, A., Sohier, T., Castelli, I.E., Cepellotti, A., Pizzi, G., and Marzari, N.: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018).CrossRefGoogle ScholarPubMed
Marrazzo, A., Gibertini, M., Campi, D., Mounet, N., and Marzari, N.: Prediction of a large-gap and switchable kane-mele quantum spin hall insulator. Phys. Rev. Lett. 120, 117701 (2018).CrossRefGoogle ScholarPubMed
Pacilé, D., Meyer, J.C., Girit, Ç.Ö., and Zettl, A.: The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008).CrossRefGoogle Scholar
Gupta, A., Sakthivel, T., and Seal, S.: Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44 (2015).CrossRefGoogle Scholar
Thakur, S. and Karak, N.: Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon 94, 224 (2015).CrossRefGoogle Scholar
Burkhardt, U., Gurin, V., Haarmann, F., Borrmann, H., Schnelle, W., Yaresko, A., and Grin, Y.: On the electronic and structural properties of aluminum diboride Al0.9B2. J. Solid State Chem. 177, 389 (2004).CrossRefGoogle Scholar
Savaş, Ö. and Kayikci, R.: Production and wear properties of metal matrix composites reinforced with boride particles. Mater. Des. 51, 641 (2013).CrossRefGoogle Scholar
Deppisch, C., Liu, G., Hall, A., Xu, Y., Zangvil, A., Shang, J.K., and Economy, J.: The crystallization and growth of AlB2 single crystal flakes in aluminum. J. Mater. Res. 13, 3485 (1998).CrossRefGoogle Scholar
Suda, J. and Matsunami, H.: Heteroepitaxial growth of group-III nitrides on lattice-matched metal boride ZrB2 (0 0 0 1) by molecular beam epitaxy. J. Cryst. Growth 237–239, 1114 (2002).CrossRefGoogle Scholar
Yamada-Takamura, Y., Wang, Z.T., Fujikawa, Y., Sakurai, T., Xue, Q.K., Tolle, J., Liu, P-L., Chizmeshya, A.V.G., Kouvetakis, J., and Tsong, I.S.T.: Surface and interface studies of GaN epitaxy on Si(111) via ZrB2 buffer layers. Phys. Rev. Lett. 95, 266105 (2005).CrossRefGoogle Scholar
Hoffmann, R-D. and Pöttgen, R.: AlB2-related intermetallic compounds – a comprehensive view based on group-subgroup relations. Z. Kristallogr.–Cryst. Mater. 216, 127 (2001).CrossRefGoogle Scholar
Loa, I., Kunc, K., Syassen, K., and Bouvier, P.: Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phys. Rev. B 66, 134101 (2002).CrossRefGoogle Scholar
Matkovich, V.I., Economy, J., and Giese, R.F.: Presence of carbon in aluminum borides. J. Am. Chem. Soc. 86, 2337 (1964).CrossRefGoogle Scholar
Kisly, P.S., Prikhna, T.A., and Golubyak, L.S.: Properties of high-temperature solution-grown aluminium borides. J. Less-Common Met. 117, 349 (1986).CrossRefGoogle Scholar
Samsonov, G.V., Neronov, V.A., and Lamikhov, L.K.: The conditions, structure and some properties of phases in the Al–B system. J. Less-Common Met. 67, 291 (1979).CrossRefGoogle Scholar
Serebryanskii, V.T. and Epel’baum, V.A.: Phase diagram of the aluminum–boron system. J. Struct. Chem. 2, 692 (1961).CrossRefGoogle Scholar
Deppisch, C., Liu, G., Shang, J.K., and Economy, J.: Processing and mechanical properties of AlB2 flake reinforced Al-alloy composites. Mater. Sci. Eng. A 225, 153 (1997).CrossRefGoogle Scholar
Hall, A. and Economy, J.: The Al(L) + AlB12 ↔ AlB2 peritectic transformation and its role in the formation of high aspect ratio AlB2 flakes. J. Phase Equilib. 21, 63 (2000).CrossRefGoogle Scholar
Hall, A.C. and Economy, J.: Preparing high- and low-aspect ratio AlB2 flakes from borax or boron oxide. JOM 52, 42 (2000).CrossRefGoogle Scholar
Padova, P.D., Ottaviani, C., Quaresima, C., Olivieri, B., Imperatori, P., Salomon, E., Angot, T., Quagliano, L., Romano, C., Vona, A., Muniz-Miranda, M., Generosi, A., Paci, B., and Lay, G.L.: 24 h stability of thick multilayer silicene in air. 2D Mater. 1, 21003 (2014).CrossRefGoogle Scholar
Ohsawa, K., Hayashi, Y., Hasunuma, R., and Yamabe, K.: Roughness increase on surface and interface of SiO2 grown on atomically flat Si(111) terrace. J. Phys.: Conf. Ser. 191, 12031 (2009).Google Scholar
Kim, J., Kim, F., and Huang, J.: Seeing graphene-based sheets. Mater. Today 13, 28 (2010).CrossRefGoogle Scholar
Zhu, J.: Graphene production: New solutions to a new problem. Nat. Nanotechnol. 3, 528 (2008).CrossRefGoogle ScholarPubMed
Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Ding, F., Yu, T., and Zhang, H.: Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9, 1974 (2013).CrossRefGoogle Scholar
Mannix, A.J., Zhou, X-F., Kiraly, B., Wood, J.D., Alducin, D., Myers, B.D., Liu, X., Fisher, B.L., Santiago, U., Guest, J.R., Yacaman, M.J., Ponce, A., Oganov, A.R., Hersam, M.C., and Guisinger, N.P.: Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513 (2015).CrossRefGoogle ScholarPubMed
Zhang, Z., Mannix, A.J., Hu, Z., Kiraly, B., Guisinger, N.P., Hersam, M.C., and Yakobson, B.I.: Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16, 6622 (2016).CrossRefGoogle Scholar
Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., Cheng, P., Meng, S., Chen, L., and Wu, K.: Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563 (2016).CrossRefGoogle ScholarPubMed
Paul, A., van Dal, M.J.H., Kodentsov, A.A., and van Loo, F.J.J.: The kirkendall effect in multiphase diffusion. Acta Mater. 52, 623 (2004).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Wang, Y., Raabe, D., Klüber, C., and Roters, F.: Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 52, 2229 (2004).CrossRefGoogle Scholar
Duan, Y.H., Sun, Y., Guo, Z.Z., Peng, M.J., Zhu, P.X., and He, J.H.: Elastic constants of AlB2-type compounds from first-principles calculations. Comput. Mater. Sci. 51, 112 (2012).CrossRefGoogle Scholar
Shein, I.R. and Ivanovskii, A.L.: Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p, and d metals from first-principles calculations. J. Phys.: Condens. Matter 20, 415218 (2008).Google Scholar
Gaillac, R., Pullumbi, P., and Coudert, F-X.: ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys.: Condens. Matter 28, 275201 (2016).Google ScholarPubMed
Hofmann, W. and Jäniche, W.: Die Struktur von Aluminiumborid AlB2. Z. Phys. Chem. 31B, 214 (1936).CrossRefGoogle Scholar
Whittaker, M.L., Sohn, H.Y., and Cutler, R.A.: Oxidation kinetics of aluminum diboride. J. Solid State Chem. 207, 163 (2013).CrossRefGoogle Scholar