Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T04:04:03.840Z Has data issue: false hasContentIssue false

29Si nuclear-magnetic-resonance and vibrational spectroscopy studies of SiO2–TiO2 powders prepared by the sol-gel process

Published online by Cambridge University Press:  31 January 2011

J. P. Rainho
Affiliation:
Departments of Physics and Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal
J. Rocha
Affiliation:
Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal
L. D. Carlos
Affiliation:
Department of Physics, University of Aveiro, 3810–193 Aveiro, Portugal
R. M. Almeida
Affiliation:
Department of Materials Engineering, Institut de Engenharia de Sistemas e Computadores (INESC) Investigaçáo e Desenvolvimento (ID), Instituto Superior Técnico, Av. Rovisco Pais, 1000–049 Lisbon, Portugal
Get access

Abstract

The sol-gel synthesis and structural characterization of SiO2–TiO2 powders are reported. Samples with titania concentrations in the range of 0 to 30 mol%, calcined at temperatures between 120 and 1300 °C, were characterized by 29Si magic-angle-spinning nuclear-magnetic-resonance (MAS NMR) and cross polarization MAS NMR, Raman and Fourier transform infrared spectroscopies, and powder x-ray diffraction. Tetrahedrally coordinated Ti (IV) ions were found in the titanosilicate matrix. When the titania content increases beyond approximately 10 mol% and upon calcination at temperatures over approximately 700 °C, the segregation of an amorphous silica-rich phase occurs, together with the precipitation of anatase nanocrystallites with average sizes between 3 and 17 nm, depending on the temperature. An increase in the heat treatment temperature, or the titania content, leads to an increase in the degree of homocondensation (Si–O–Si and Ti–O–Ti bonds) and a simultaneous reduction in the degree of heterocondensation (Si–O–Ti bonds).

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gerlich, D., Wolf, M., Yaacov, I., and Nissenson, B., J. Non-Cryst. Solids 21, 243 (1976).CrossRefGoogle Scholar
2Schroder, H., in Physics of Thin Films: Advances in Research and Development, edited by Hass, G. and Thun, R.E. (Academic Press, New York, 1969), Vol. 5, p. 119.Google Scholar
3Brinker, C.J. and Harrington, M.S., Sol. Energy Mater. 5, 159 (1981).CrossRefGoogle Scholar
4Bihuniak, P.P. and Condrate, R.A., J. Non-Cryst. Solids 44, 331 (1981).CrossRefGoogle Scholar
5Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).Google Scholar
6Anderson, M.W., Terasaki, O., Ohsuna, T., Philippou, A., Mackay, S.P., Ferreira, A., Rocha, J., and Lidin, S., Nature 367, 347 (1994).CrossRefGoogle Scholar
7Lukosc, W. and Tiefenhaler, K.T., Opt. Lett. 8, 537 (1983).CrossRefGoogle Scholar
8Orignac, X., Barbier, D., Du, X.M., Almeida, R.M., McCarthy, O., and Yeatman, E., Opt. Mater. 12, 1 (1999).CrossRefGoogle Scholar
9Rocha, J., Carlos, L.D., Rainho, J.P., Lin, Z., Ferreira, P., and Almeida, R.M., J. Mater. Chem. 10, 1371 (2000).CrossRefGoogle Scholar
10Almeida, R.M., J. Sol-Gel Sci. Technol. 13, 51 (1998).CrossRefGoogle Scholar
11Orignac, X. and Almeida, R.M., IEE Proc.-Optoelectron. 143, 287 (1996).CrossRefGoogle Scholar
12Davis, R.J. and Liu, Z., Chem. Mater. 9, 2311 (1997).CrossRefGoogle Scholar
13Almeida, R.M. and Christensen, E.E., J. Sol-Gel Sci. Technol. 8, 409 (1997).Google Scholar
14Karthikeyan, A. and Almeida, R.M., J. Non-Cryst. Solids 274, 169 (2000).CrossRefGoogle Scholar
15Almeida, R.M., Marques, M.I.B., and Orignac, X., J. Sol-Gel Sci. Technol. 8, 293 (1997).Google Scholar
16Orignac, X., Vasconcelos, H.C., and Almeida, R.M., J. Non-Cryst. Solids 217, 155 (1997).CrossRefGoogle Scholar
17Seco, A.M., Gonçalves, M.C., and Almeida, R.M., Mater. Sci. Eng. B 76, 193 (2000).CrossRefGoogle Scholar
18Klug, H.P. and Alexander, L.E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley, New York, 1974).Google Scholar
19Engelhardt, G. and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites (John Wiley, New York, 1987).Google Scholar
20Ohsaka, T., Izumi, F., and Fujiki, Y., J. Raman Spectrosc. 7, 321 (1978).CrossRefGoogle Scholar
21Almeida, R.M. and Du, X.M., in Proceedings of the 5th European Society of Glass (ESG) Science and Technology Conference, ed-ited by Helebrant, A., Maryska, M., and Kasa, S. (Czech Glass So-ciety, Prague, 1999). Novy Bor ISBN 80-238-2361-X.Google Scholar
22Bell, R.J., Dean, P., and Hibbins-Butler, D.C., J. Phys. Chem. 3, 2111 (1970).Google Scholar
23Hass, M., J. Phys. Chem. Solids 31, 415 (1970).CrossRefGoogle Scholar
24Galeener, F.L., Phys. Rev. B 19, 4292 (1979).CrossRefGoogle Scholar
25Best, M.F. and Condrate, R.A., J. Mater. Sci. Lett. 4, 994 (1985).CrossRefGoogle Scholar
26Mihailova, B., Valtchev, V., Mintova, S., and Konstantinov, L., Zeolites 16, 22 (1996).CrossRefGoogle Scholar
27Schraml-Marth, M., Walther, L.K., Wokaun, A., Handy, B.E., and Baiker, A., J. Non-Cryst. Solids 143, 93 (1992).CrossRefGoogle Scholar
28Abe, Y., Sugimoto, N., Nagao, Y., and Misono, T., J. Non-Cryst. Solids 104, 164 (1988).CrossRefGoogle Scholar
29Sorek, Y., Reisfeld, R., and Tenne, R., Chem. Phys. Lett. 227, 235 (1994).CrossRefGoogle Scholar
30Almeida, R.M., Guiton, T.A., and Pantano, C.G., J. Non-Cryst. Solids 121, 193 (1990).CrossRefGoogle Scholar
31Almeida, R.M. and Pantano, C.G., J. Appl. Phys. 68, 4225 (1990).CrossRefGoogle Scholar