Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T04:03:09.376Z Has data issue: false hasContentIssue false

Hodge realizations of 1-motives and the derived Albanese

Published online by Cambridge University Press:  31 January 2012

Vadim Vologodsky*
Affiliation:
Department of Mathematics, University of Oregon, Eugene, OR, 97403, [email protected]
Get access

Abstract

We prove that the embedding of the derived category of 1-motives up to isogeny into the triangulated category of effective Voevodsky motives, as well as its left adjoint functor LAlb, commute with the Hodge realization. This result yields a new proof of the rational form of Deligne's conjecture on 1-motives.

Type
Research Article
Copyright
Copyright © ISOPP 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AM.Atiyah, M., Macdonald, I., Introduction to Commutative Algebra, Westveiw Press (1969).Google Scholar
BK.Barbieri-Viale, L., Kahn, B., On the derived category of 1-motives, arXiv:1009.1900 (2010).Google Scholar
BRS.Barbieri-Viale, L., Rosenschon, A., Saito, M., Deligne's conjecture on 1-motives, Ann. of Math. (2) 158 (2003), no. 2.Google Scholar
Bei.Beilinson, A., Notes on absolute Hodge cohomology, Applications of algebraic K-theory to algebraic geometry and number theory, Contemp. Math. 55, Amer. Math. Soc. (1986).Google Scholar
BV.Beilinson, A., and Vologodsky, V., A guide to Voevodsky's motives. Geom. Funct. Anal. 17 (2008), no. 6, 17091787.CrossRefGoogle Scholar
Ben.Bénabou, J., Introduction to bicategories, Reports of the Midwest Category Seminar (1967), 1-77, (Lecture Notes in Math. 47). Springer-Verlag, Berlin, 1967.Google Scholar
BoKa.Bondal, A., Kapranov, M., Enhanced triangulated categories, Math. USSR-Sb. 70 (1991), no. 1, 93–107. (Russian original: Mat. Sb. 181 (1990), no. 5, 669-683).Google Scholar
Br.Breen, L., Extensions of abelian sheaves and Eilenberg-MacLane algebras, Invent. Math. 9 (1969/1970), 1544.CrossRefGoogle Scholar
D2.Deligne, P., Théorie de Hodge 2, Publ. Math. IHES 40 (1971).CrossRefGoogle Scholar
D3.Deligne, P., Théorie de Hodge 3, Publ. Math. IHES 44 (1974).Google Scholar
DT.Dold, A., Thom, R.: Quasifaserungen und unendliche symmtrische Produkte, Ann. Math. 67 (1956).Google Scholar
Dri.Drinfeld, V., DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643691.Google Scholar
Hu1.Huber, A., Realization of Voevodsky's motives, J. Algebraic Geom. 9 (2000), no. 4.Google Scholar
Hu2.Huber, A., Corrigendum to: “Realization of Voevodsky's motives”, J. Algebraic Geom. 13 (2004), no. 1.Google Scholar
KS.Kashiwara, M., Schapira, P., Categories and sheaves, A series of comprehensive studies in Mathematics 332, Springer.Google Scholar
K.Keller, B., On differential graded categories, International Congress of Mathematicians. Vol. II, 151190, Eur. Math. Soc., Zürich, 2006.Google Scholar
L.Loday, J.-L., Cyclic Homology, second ed., Springer (1998).Google Scholar
LP.Loday, J.-L., Pirashvili, T., Chapter 13 in [L].Google Scholar
MVW.Mazza, C., Voevodsky, V., Weibel, C., Lectures Notes on Motivic Cohomology, Clay Mathematical Monographs 2, AMS, Providence, RI, 2006.Google Scholar
N.Neeman, A., The derived category of an exact category. J. Algebra 135 (1990), no. 2, 388394.Google Scholar
O.Orgogozo, F., Isomotifs de dimension inférieure ou égale à un, Manuscripta Math. 115 (2004), no. 3.Google Scholar
R1.Ramachandran, N., Duality of Albanese and Picard 1-motives, K-Theory 22 (2001).CrossRefGoogle Scholar
R2.Ramachandran, , One-motives and a conjecture of Deligne, J. Algebraic Geom. 13, no. 1, (2004).Google Scholar
SGA4. Théorie de Topos et Cohomologie Étale des Schémas, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (Artin, M., Grothendieck, A., Verdier, J.L., eds.), Springer Lect. Notes in Math. 269,270,305 (1972-1973).Google Scholar
SV.Suslin, A., Voevodsky, V., Singular homology of abstract algebraic varieties, Inv. Math. 123 (1996).Google Scholar
T.Toën, B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615667.Google Scholar
V1.Voevodsky, V., Triangulated category of motives over a field, in “Cycles, Transfers, and Motivic Homology Theories”, Annals of Mathematics Studies 143 (2000).Google Scholar
V2.Voevodsky, V., Homology of schemes, Selecta Math. (N.S.) 2 (1996), no. 1.Google Scholar
Vol1.Vologodsky, V., On the derived DG functors, Math. Research Letters 17, Issue 6, (2010), 11551170.CrossRefGoogle Scholar
Vol2.Vologodsky, V., The Albanese functor commutes with the Hodge realization, arXiv:0809.2830 (2008).Google Scholar
Vol3.Vologodsky, V., Some applications of weight structures of Bondarko, arXiv:1102.0579 (2011). To appear in IMRN.Google Scholar