Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T08:20:27.211Z Has data issue: false hasContentIssue false

Chromosomes of Aspidogaster conchicola

Published online by Cambridge University Press:  12 April 2024

R. Petkeviciute*
Affiliation:
Institute of Ecology, Lithuanian Academy of Sciences, Akademijos 2, Vilnius 2600, Lithuania
*
*Fax: (370 2) 72 92 57 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of mitotic and meiotic chromosome spreads of Aspidogaster conchicola (Trematoda: Aspidogastrea) reveals a diploid number of 10 for this species. Haploid sets containing 5 bivalents confirm the diploid number. The karyotype consists of one pair of comparatively long subtelocentric chromosomes and four pairs of shorter acrocentric elements. The results are discussed in comparison with existing data on chromosomes of aspidogastrean species and other related helminth groups.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2001

References

Baršienė, J. (1993) The karyotypes of trematodes, Vilnius:Academia,370(in Russian)..Google ScholarPubMed
Bychovskaya-Pavlovskaya, I.E. & Ginetzinskaya, T.A. (1975) The current state of knowledge of Trematoda and main aims of their investigation. Parazitologiya 9, 316.Google Scholar
Gibson, D.I. (1987) Questions in digenean systematics and evolution. Parasitology 95, 429460.CrossRefGoogle ScholarPubMed
Ginetzinskaya, T.A. (1968) ]#x005B;Trematodes, their life cycles, biology and evolution.] Leningrad, Nauka, 412 pp. (in Russian).Google Scholar
Grossman, A.I., Short, R.B. & Cain, G.D. (1981) Karyotype evolution and sex chromosome differentiation in schistosomes (Trematoda, Schistosomatidae). Chromosoma 84, 413430.CrossRefGoogle ScholarPubMed
Koroleva, Y.I. (1969) Karyology of some species of Diplozoon . Parazitologiya 3, 411414.Google Scholar
La, Rue G.R. (1957) The classification of digenetic Trematoda: a review and a new system. Experimental Parasitology 6, 306349.Google Scholar
Levan, A., Fredga, K. & Sandberg, A. (1964) Nomenclature for centromere position on chromosomes. Hereditas 52, 201220.CrossRefGoogle Scholar
Littlewood, D.T.J., Rohde, K. & Clough, K.A. (1999) The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules. Biological Journal of the Linnean Society 66, 75114.CrossRefGoogle Scholar
LoVerde, P.T. & Fredericksen, D.W. (1978) The chromosomes of Cotylogaster occidentalis and Cotylaspis insignis (Trematoda: Aspidogastrea) with evolutionary considerations. Proceedings of the Helminthological Society of Washington 45, 158161.Google Scholar
Rohde, K. (1972) The Aspidogastrea, especially Multicotyle purvisi Dawes, 1941. Advances in Parasitology 10, 77151.CrossRefGoogle Scholar
Rohde, K. (1973) Structure and development of Lobatostoma manteri sp. nov. (Trematoda: Aspidogastrea) from the Great Barrier Reef, Australia. Parasitology 66, 6383.CrossRefGoogle ScholarPubMed
Rohde, K. (1994) Chromosomes of Kuhnia scombri and K. sprostonae (Monogenea, Polyopisthocotylea, Mazocraeidae). Acta Parasitologica 39, 117119.Google Scholar