The continuity relationship that is often used in the study of ice sheets and ice shelves is developed by integrating the equation of continuity through the ice thickness. This equation is then integrated again with respect to horizontal distance from an ice divide, showing that the difference between the true ice velocity and the balance velocity, which is defined, is a measure of the time chance of the mass of a column through the ice thickness.
The relationship is applied using data from along the “Byrd” station strain network, Antarctica. This region is found to be thinning slowly (0.03 m a−1 of ice of mean density) and uniformly, but it is still close to steady-state. The calculations would show a larger thinning rate if bottom sliding contributed more to the ice movement and integral shear contributed less, but the “Byrd” station bore-hole tilting results of Garfield and Ueda (1975, 1976), together with surface velocity measurements at “Byrd” station, indicate that most of the ice flow is by deformation within the ice mass. This large amount of internal deformation is more than that predicted by most “flow laws”, probably because of the strongly oriented ice-crystal fabric in the ice sheet. The cause of ice thinning is probably decreased surface mass balance beginning before A.D. 1550.
The consistent relationship between measured velocity and balance velocity indicates that the ice flow is simple and that flow lines are in the same direction at depth as at the surface when considered smoothed over a distance of 10 km. Because the ice sheet is at present thinning, the balance velocity, calculated only from flow line and surface mass-balance data, and the somewhat mistaken assumption of steady-state is 15% less than the true ice velocity. This rather small difference confirms the use of balance-velocity estimates where velocity measurements are not available.