Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T19:53:52.692Z Has data issue: false hasContentIssue false

Static and dynamic stability of pendant drops

Published online by Cambridge University Press:  08 August 2023

Fei Zhang
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Xinping Zhou*
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
*
Email address for correspondence: [email protected]

Abstract

Despite the widespread occurrence of pendant drops in nature, there is still a lack of combined studies on their dynamic and static stability. This study focuses on the dynamic and static stability of elongated drops with either a free or pinned contact line on a plane. We first examine static stability for both axisymmetric and non-axisymmetric perturbations subject to volume or pressure constraints. The stability limits for volume and pressure disturbances (axisymmetric) correspond to the maximum volume and pressure of the drops, respectively. Drops with free contact lines are marginally stable to non-axisymmetric perturbations because of their horizontal translational invariance, whereas pinned drops are stable. The linear dynamic stability is then investigated numerically through a boundary element model, restricted to volume disturbances. Results show that when the stability limit is reached, the first zonal mode has a zero frequency, suggesting that the thresholds for static and dynamic stability are essentially equivalent. Furthermore, natural frequencies experience sharp changes as the stability limit is approached. Another zero frequency mode associated with the horizontal motion of the centre of mass is also revealed by the numerical results, reflecting the horizontal translational invariance of drops with free contact lines. Finally, the frequency spectrum modified by gravity is explored, resulting in the identification of five gravity-induced frequency shift patterns. The frequency shifts break the spectral degeneracy for hemispherical drops with free contact lines, leading to various spectral orderings according to polar and azimuthal wavenumbers.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basaran, O.A. 1992 Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169198.CrossRefGoogle Scholar
Basaran, O.A. & DePaoli, D.W. 1994 Nonlinear oscillations of pendant drops. Phys. Fluids 6 (9), 29232943.CrossRefGoogle Scholar
Bhattacharya, S. 2016 Interfacial wave dynamics of a drop with an embedded bubble. Phys. Rev. E 93 (2), 023119.CrossRefGoogle ScholarPubMed
Bostwick, J.B. & Steen, P.H. 2009 Capillary oscillations of a constrained liquid drop. Phys. Fluids 21 (3), 032108.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2014 Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech. 760, 538.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2015 Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47, 539568.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2016 Response of driven sessile drops with contact-line dissipation. Soft Matt. 12 (43), 89198926.CrossRefGoogle ScholarPubMed
Busse, F.H. 1984 Oscillations of a rotating liquid drop. J. Fluid Mech. 142, 18.CrossRefGoogle Scholar
Celestini, F. & Kofman, R. 2006 Vibration of submillimeter-size supported droplets. Phys. Rev. E 73 (4), 041602.CrossRefGoogle ScholarPubMed
Chang, C.-H. & Franses, E.I. 1994 Dynamic tension behavior of aqueous octanol solutions under constant-area and pulsating-area conditions. Chem. Engng Sci. 49 (3), 313325.CrossRefGoogle Scholar
Chang, C.-T., Bostwick, J.B., Daniel, S. & Steen, P.H. 2015 Dynamics of sessile drops. Part 2. Experiment. J. Fluid Mech. 768, 442467.CrossRefGoogle Scholar
Chang, C.-T., Bostwick, J.B., Steen, P.H. & Daniel, S. 2013 Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops. Phys. Rev. E 88 (2), 023015.CrossRefGoogle ScholarPubMed
Concus, P. & Finn, R. 1979 The shape of a pendant liquid drop. Phil. Trans. R. Soc. Lond. A 292 (1391), 307340.Google Scholar
Costalonga, M. & Brunet, P. 2020 Directional motion of vibrated sessile drops: a quantitative study. Phys. Rev. Fluids 5 (2), 023601.CrossRefGoogle Scholar
Daly, B.J. 1969 Numerical study of the effect of surface tension on interface instability. Phys. Fluids 12 (7), 13401354.CrossRefGoogle Scholar
Del Rıo, O.I. & Neumann, A.W. 1997 Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J. Colloid Interface Sci. 196 (2), 136147.Google Scholar
DePaoli, D.W., Scott, T.C. & Basaran, O.A. 1992 Oscillation frequencies of droplets held pendant on a nozzle. Sep. Sci. Technol. 27 (15), 20712082.CrossRefGoogle Scholar
Ding, D. & Bostwick, J.B. 2022 a Oscillations of a partially wetting bubble. J. Fluid Mech. 945, A24.CrossRefGoogle Scholar
Ding, D. & Bostwick, J.B. 2022 b Pressure modes of the oscillating sessile drop. J. Fluid Mech. 944, R1.CrossRefGoogle Scholar
Ding, H., Zhu, X., Gao, P. & Lu, X.-Y. 2018 Ratchet mechanism of drops climbing a vibrated oblique plate. J. Fluid Mech. 835, R1.CrossRefGoogle Scholar
Dubey, P., Roy, A. & Subramanian, G. 2022 Linear stability of a rotating liquid column revisited. J. Fluid Mech. 933, A55.CrossRefGoogle Scholar
Ebrahimian, M., Noorian, M.A. & Haddadpour, H. 2013 A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers. Engng Anal. Bound. Elem. 37 (2), 383392.CrossRefGoogle Scholar
Ebrahimian, M., Noorian, M.A. & Haddadpour, H. 2015 Free vibration sloshing analysis in axisymmetric baffled containers under low-gravity condition. Microgravity Sci. Technol. 27 (2), 97106.CrossRefGoogle Scholar
Feng, J.Q. 1992 The oscillations of a bubble moving in an inviscid fluid. SIAM J. Appl. Maths 52 (1), 114.CrossRefGoogle Scholar
Feng, J.Q. & Beard, K.V. 1991 Three-dimensional oscillation characteristics of electrostatically deformed drops. J. Fluid Mech. 227, 429447.CrossRefGoogle Scholar
Finn, R. 1986 Equilibrium Capillary Surfaces. Springer.CrossRefGoogle Scholar
Gañán, A.M. 1991 Oscillations of liquid captive rotating drops. J. Fluid Mech. 226, 6389.CrossRefGoogle Scholar
Gañán, A.M. & Barrero, A. 1990 Free oscillations of liquid captive drops. Microgravity Sci. Technol. 3, 7086.Google Scholar
Gulec, S., Yadav, S., Das, R., Bhave, V. & Tadmor, R. 2019 The influence of gravity on contact angle and circumference of sessile and pendant drops has a crucial historic aspect. Langmuir 35 (16), 54355441.CrossRefGoogle Scholar
Haefner, S., Benzaquen, M., Bäumchen, O., Salez, T., Peters, R., McGraw, J.D., Jacobs, K., Raphaël, E. & Dalnoki-Veress, K. 2015 Influence of slip on the Plateau–Rayleigh instability on a fibre. Nat. Commun. 6, 7409.CrossRefGoogle ScholarPubMed
Henderson, D.M., Pritchard, W.G. & Smolka, L.B. 1997 On the pinch-off of a pendant drop of viscous fluid. Phys. Fluids 9 (11), 31883200.CrossRefGoogle Scholar
Ibrahim, R.A. 2005 Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press.CrossRefGoogle Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous liquids. Proc. Math. Phys. Engng 452 (1948), 11131126.Google Scholar
Kumar, K. & Tuckerman, L.S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lowry, B.J. & Steen, P.H. 1995 Capillary surfaces: stability from families of equilibria with application to the liquid bridge. Proc. R. Soc. Lond. A 449 (1937), 411439.Google Scholar
Lyubimov, D.V., Lyubimova, T.P. & Shklyaev, S.V. 2004 Non-axisymmetric oscillations of a hemispherical drop. Fluid Dyn. 39 (6), 851862.CrossRefGoogle Scholar
Lyubimov, D.V., Lyubimova, T.P. & Shklyaev, S.V. 2006 Behavior of a drop on an oscillating solid plate. Phys. Fluids 18 (1), 012101.CrossRefGoogle Scholar
Maddocks, J.H. 1987 Stability and folds. Arch. Rat. Mech. Anal. 99 (4), 301328.CrossRefGoogle Scholar
Marinov, P. 2012 Stability of capillary surfaces with planar boundary in the absence of gravity. Pac. J. Appl. Maths 255 (1), 177190.CrossRefGoogle Scholar
McCraney, J., Kern, V., Bostwick, J.B., Daniel, S. & Steen, P.H. 2022 Oscillations of drops with mobile contact lines on the International Space Station: elucidation of terrestrial inertial droplet spreading. Phys. Rev. Lett. 129 (8), 084501.CrossRefGoogle ScholarPubMed
Michael, D.H. 1981 Meniscus stability. Annu. Rev. Fluid Mech. 13 (1), 189216.CrossRefGoogle Scholar
Mollot, D.J., Tsamopoulos, J., Chen, T.-Y. & Ashgriz, N. 1993 Nonlinear dynamics of capillary bridges: experiments. J. Fluid Mech. 255, 411435.CrossRefGoogle Scholar
Montanero, J.M. & Ponce-Torres, A. 2020 Review on the dynamics of isothermal liquid bridges. Appl. Mech. Rev. 72 (1), 010803.CrossRefGoogle Scholar
Myshkis, A.D., Babskii, V.G., Kopachevskii, N.D., Slobozhanin, L.A. & Tyuptsov, A.D. 1987 Low-Gravity Fluid Mechanics. Springer.CrossRefGoogle Scholar
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14 (4), 395404.CrossRefGoogle ScholarPubMed
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2009 Vibrations of sessile drops. Eur. Phys. J.: Spec. Top. 166 (1), 710.Google Scholar
Padday, J.F. 1971 The profiles of axially symmetric menisci. Phil. Trans. R. Soc. Lond. A 269 (1197), 265293.Google Scholar
Padday, J.F. & Pitt, A. 1972 Axisymmetric meniscus profiles. J. Colloid Interface Sci. 38 (2), 323334.CrossRefGoogle Scholar
Padday, J.F. & Pitt, A.R. 1973 The stability of axisymmetric menisci. Phil. Trans. R. Soc. Lond. A 275 (1253), 489528.Google Scholar
Parkinson, L.M. & Phan, C.M. 2018 Natural vibration of an aqueous pendant drop. Exp. Therm. Fluid Sci. 90, 4854.CrossRefGoogle Scholar
Perez, M., Brechet, Y., Salvo, L., Papoular, M. & Suery, M. 1999 Oscillation of liquid drops under gravity: influence of shape on the resonance frequency. Eur. Phys. Lett. 47 (2), 189195.CrossRefGoogle Scholar
Pham, C.-T., Perrard, S. & Le Doudic, G. 2020 Surface waves along liquid cylinders. Part 1. Stabilising effect of gravity on the Plateau–Rayleigh instability. J. Fluid Mech. 891, A8.CrossRefGoogle Scholar
Pitts, E. 1974 The stability of pendent liquid drops. Part 2. Axial symmetry. J. Fluid Mech. 63 (3), 487508.CrossRefGoogle Scholar
Plateau, J.A.F. 1873 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, vol. 2. Gauthier-Villars.Google Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC.CrossRefGoogle Scholar
Pozrikidis, C. 2012 Stability of sessile and pendant liquid drops. J. Engng Maths 72 (1), 120.CrossRefGoogle Scholar
Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 1 (1), 413.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29 (196–199), 7197.Google Scholar
Sakakeeny, J., Deshpande, C., Deb, S., Alvarado, J.L. & Ling, Y. 2021 A model to predict the oscillation frequency for drops pinned on a vertical planar surface. J. Fluid Mech. 928, A28.CrossRefGoogle Scholar
Sakakeeny, J. & Ling, Y. 2020 Natural oscillations of a sessile drop on flat surfaces with mobile contact lines. Phys. Rev. Fluids 5 (12), 123604.CrossRefGoogle Scholar
Sakakeeny, J. & Ling, Y. 2021 Numerical study of natural oscillations of supported drops with free and pinned contact lines. Phys. Fluids 33 (6), 062109.CrossRefGoogle Scholar
Scase, M.M. & Hill, R.J.A. 2018 Centrifugally forced Rayleigh–Taylor instability. J. Fluid Mech. 852, 543577.CrossRefGoogle Scholar
Schulkes, R.M.S.M. 1994 The evolution and bifurcation of a pendant drop. J. Fluid Mech. 278, 83100.CrossRefGoogle Scholar
Sharma, S. & Wilson, D.I. 2021 On a toroidal method to solve the sessile-drop oscillation problem. J. Fluid Mech. 919, A39.CrossRefGoogle Scholar
Shi, T. & Apfel, R.E. 1995 Oscillations of a deformed liquid drop in an acoustic field. Phys. Fluids 7 (7), 15451552.CrossRefGoogle Scholar
Siekmann, J. & Schilling, U. 1989 On the vibrations of an inviscid liquid droplet contacting a solid wall in a low-gravity environment. Appl. Microgravity Technol. 2, 1726.Google Scholar
Steen, P.H., Chang, C.-T. & Bostwick, J.B. 2019 Droplet motions fill a periodic table. Proc. Natl Acad. Sci. USA 116 (11), 48494854.CrossRefGoogle ScholarPubMed
Strani, M. & Sabetta, F. 1984 Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233247.CrossRefGoogle Scholar
Sumanasekara, U.R. & Bhattacharya, S. 2017 Detailed finer features in spectra of interfacial waves for characterization of a bubble-laden drop. J. Fluid Mech. 831, 698718.CrossRefGoogle Scholar
Sumesh, P.T. & Govindarajan, R. 2010 The possible equilibrium shapes of static pendant drops. J. Chem. Phys. 133 (14), 144707.CrossRefGoogle ScholarPubMed
Temperton, R.H., Smith, M.I. & Sharp, J.S. 2015 Mechanical vibrations of pendant liquid droplets. Eur. Phys. J. E 38, 79.CrossRefGoogle ScholarPubMed
Trinh, E., Zwern, A. & Wang, T.G. 1982 An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115, 453474.CrossRefGoogle Scholar
Tsamopoulos, J.A. & Brown, R.A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.CrossRefGoogle Scholar
Wang, T.G., Anilkumar, A.V. & Lee, C.P. 1996 Oscillations of liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 308, 114.CrossRefGoogle Scholar
Wente, H. 1980 The symmetry of sessile and pendent drops. Pac. J. Appl. Maths 88 (2), 387397.CrossRefGoogle Scholar
Yariv, E. 2022 Shape of sessile drops at small contact angles. J. Fluid Mech. 950, R4.CrossRefGoogle Scholar
Yoshiyasu, N., Matsuda, K. & Takaki, R. 1996 Self-induced vibration of a water drop placed on an oscillating plate. J. Phys. Soc. Japan 65 (7), 20682071.CrossRefGoogle Scholar
Zhang, F. & Zhou, X. 2020 General exotic capillary tubes. J. Fluid Mech. 885, A1.CrossRefGoogle Scholar
Zhang, F., Zhou, X. & Ding, H. 2023 Effects of gravity on natural oscillations of sessile drops. J. Fluid Mech. 962, A10.CrossRefGoogle Scholar