Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T09:08:00.458Z Has data issue: false hasContentIssue false

Stability of a Gaussian pancake vortex in a stratified fluid

Published online by Cambridge University Press:  08 February 2013

M. Eletta Negretti*
Affiliation:
LadHyX, CNRS, Ecole Polytechnique, 91128 Palaiseau CEDEX, France
Paul Billant
Affiliation:
LadHyX, CNRS, Ecole Polytechnique, 91128 Palaiseau CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

Vortices in stably stratified fluids generally have a pancake shape with a small vertical thickness compared with their horizontal size. In order to understand what mechanism determines their minimum thickness, the linear stability of an axisymmetric pancake vortex is investigated as a function of its aspect ratio $\alpha $, the horizontal Froude number ${F}_{h} $, the Reynolds number $\mathit{Re}$ and the Schmidt number $\mathit{Sc}$. The vertical vorticity profile of the base state is chosen to be Gaussian in both radial and vertical directions. The vortex is unstable when the aspect ratio is below a critical value, which scales with the Froude number: ${\alpha }_{c} \sim 1. 1{F}_{h} $ for sufficiently large Reynolds numbers. The most unstable perturbation has an azimuthal wavenumber either $m= 0$, $\vert m\vert = 1$ or $\vert m\vert = 2$ depending on the control parameters. We show that the threshold corresponds to the appearance of gravitationally unstable regions in the vortex core due to the thermal wind balance. The Richardson criterion for shear instability based on the vertical shear is never satisfied alone. The dominance of the gravitational instability over the shear instability is shown to hold for a general class of pancake vortices with angular velocity of the form $\tilde {\Omega } (r, z)= \Omega (r)f(z)$ provided that $r\partial \Omega / \partial r\lt 3\Omega $ everywhere. Finally, the growth rate and azimuthal wavenumber selection of the gravitational instability are accounted well by considering an unstably stratified viscous and diffusive layer in solid body rotation with a parabolic density gradient.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions, (ed. Abramowitz, M. & Stegun, I.A.), Dover Publications.Google Scholar
Augier, P. & Billant, P. 2011 Onset of secondary instabilities on the zigzag instability in stratified fluids. J. Fluid Mech. 682, 120131.Google Scholar
Batchelor, G. K. & Nitsche, J. M. 1993 Instability of stratified fluid in a vertical cylinder. J. Fluid Mech. 252, 419448.CrossRefGoogle Scholar
Beckers, M., Clercx, H. J. H., van Heijst, G. J. F. & Verzicco, R. 2003 Evolution and instability of monopolar vortices in a stratified fluid. Phys. Fluids 15, 10331045.CrossRefGoogle Scholar
Beckers, M., Verzicco, R., Clercx, H. J. H. & van Heijst, G. J. F. 2001 Dynamics of pancake-like vortices in a stratified fluid: experiments, model and numerical simulations. J. Fluid Mech. 433, 127.Google Scholar
Billant, P. 2010 Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1: general stability equations. J. Fluid Mech. 660, 354395.Google Scholar
Billant, P. & Chomaz, J.-M. 2000a Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 418, 167188.Google Scholar
Billant, P., Deloncle, A., Chomaz, J.-M. & Otheguy, P. 2010 Zigzag instability of vortex pairs in stratified and rotating fluids. Part 2: analytical and numerical analyses. J. Fluid Mech. 660, 396429.CrossRefGoogle Scholar
Bonnier, M., Eiff, O. & Bonneton, P. 2000 On the density structure of far-wake vortices in a stratified fluid. Dyn. Atmos. Oceans 31, 117137.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, pp. 87105. Oxford University Press/Dover Publications.Google Scholar
Delbende, I., Chomaz, J.-M. & Huerre, P. 1998 Absolute/convective instabilities in the Batchelor vortex. J. Fluid Mech. 355, 229254.Google Scholar
Deloncle, A., Billant, P. & Chomaz, J.-M. 2008 Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.Google Scholar
Elliassen, E. & Kleinschmidt, E. 1957 Stability of a compressible baroclinic vortex in a gravity field. Dyn. Meteor. Geophys. II, Handbuch der Physik 48, 6671.Google Scholar
Flor, J.-B. & van Heijst, G. J. F 1996 Stable and unstable monopolar vortices in a stratified fluid. J. Fluid Mech. 311, 257287.Google Scholar
Fung, Y. T. 1986 Non-axisymmetric waves of a stratified vertical vortex. J. Appl. Mech. 29 (2), 368371.Google Scholar
Fung, Y. T. 1992 Richardson criteria for stratified vortex motions under gravity. Phys. Fluids 59, 445.Google Scholar
Godoy-Diana, R. & Chomaz, J.-M. 2003 Effect of the Schmidt number on the diffusion of axisymmetric pancake vortices in a stratified fluid. Phys. Fluids 15, 10581064.Google Scholar
Hoskins, B. J. 1974 The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc. 100, 480482.Google Scholar
Lin, S. J. & Pierrehumbert, R. T. 1987 Comment on Richardson criteria for stratified vortex motions under gravity. Phys. Fluids 30 (4), 12311232.Google Scholar
Matthews, P. C. 1988 A model for the onset of penetrative convection. J. Fluid Mech. 188, 571583.Google Scholar
Ooyama, K. 1966 On the stability of the baroclinic circular vortex: a sufficient criterion for instability. J. Atmos. Sci. 23, 4353.2.0.CO;2>CrossRefGoogle Scholar
Otheguy, P., Chomaz, J.-M. & Billant, P. 2006 Elliptic and zigzag instabilities on co-rotating vertical vortices in a stratified fluid. J. Fluid Mech. 553, 253272.CrossRefGoogle Scholar
Riley, J. J. & DeBruynKops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 20472059.CrossRefGoogle Scholar
Riley, J. J. & Lelong, M.-P. 2000 Fluid motion in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613657.Google Scholar
Solberg, H. 1933 Le mouvement d’inertie de l’atmosphere stable et son role dans la theorie des cyclones. In Meteor. Assoc. U.G.G.I., (ed. Lisbon, ), vol. 1, pp. 6682. Dupont.Google Scholar
Thorpe, S. A. 1994 The stability of statically unstable layers. J. Fluid Mech. 260, 315331.Google Scholar
Waite, M. L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids 23 (6), 066602.Google Scholar
Waite, M. L. & Smolarkiewicz, P. K. 2008 Instability and breakdown of a vertical vortex pair in a strongly stratified fluid. J. Fluid Mech. 606, 239273.CrossRefGoogle Scholar