Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-15T16:12:21.993Z Has data issue: false hasContentIssue false

Significant influence of fluid viscoelasticity on flow dynamics past an oscillating cylinder

Published online by Cambridge University Press:  16 November 2023

Faheem Hamid
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
C. Sasmal*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
*
Email address for correspondence: [email protected]

Abstract

This study focuses on numerically investigating the impact of fluid viscoelasticity on the flow dynamics around a transversely forced oscillating cylinder operating in the laminar vortex shedding regime at a fixed Reynolds number of $Re = 100$. Specifically, we explore how fluid viscoelasticity affects the boundary between the lock-in and no lock-in regions and the corresponding wake characteristics compared with a simple Newtonian fluid. Our findings reveal that fluid viscoelasticity enables the synchronization of the vortex street with the cylinder motion at lower oscillation frequencies than those required for a Newtonian fluid. Consequently, the lock-in region boundary for a viscoelastic fluid differs from that of a Newtonian fluid and expands in the non-dimensional cylinder oscillation amplitude and frequency parameter space. In the primary synchronization region, the wake of a Newtonian fluid exhibits ‘2S’ (two single vortices) and ‘P+S’ (a pair of vortices and a single vortex) shedding modes. In contrast, a ‘2P’ (two pairs of vortices) vortex mode is observed for a viscoelastic fluid within the same region. To gain a deeper understanding of the differences in the coherent flow structures and their associated frequencies between the two fluids, we employ the data-driven reduced-order modelling technique, known as the dynamic mode decomposition (DMD) technique. Utilizing this technique, we successfully extract and visualize the two competing fundamental frequencies (cylinder oscillation and natural vortex shedding frequencies) and their associated flow structures in the case of the no lock-in state, whereas only the dominant cylinder oscillation frequency and associated flow structure in the case of the lock-in state. Furthermore, we propose that the presence of excess strain resulting from the stretching of polymer molecules in viscoelastic fluids leads to a distinct difference in the wake structure compared with Newtonian fluids. This observation aligns with the findings obtained from the $Q$-criterion and vorticity transport analysis of the wake.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, A., Oliveira, P.J., Pinho, F.T. & Alves, M.A. 2009 The log-conformation tensor approach in the finite-volume method framework. J. Non-Newtonian Fluid Mech. 157 (1–2), 5565.CrossRefGoogle Scholar
Alam, M.I., Raj, A., Khan, P.M., Kumar, S. & Roy, S. 2021 Numerical simulation of flow of a shear-thinning Carreau fluid over a transversely oscillating cylinder. J. Fluid Mech. 921, A23.CrossRefGoogle Scholar
Al-Jamal, H. & Dalton, C. 2004 Vortex induced vibrations using large eddy simulation at a moderate Reynolds number. J. Fluids Struct. 19 (1), 7392.CrossRefGoogle Scholar
Alves, M.A., Oliveira, P.J. & Pinho, F.T. 2003 A convergent and universally bounded interpolation scheme for the treatment of advection. Intl J. Numer. Meth. Fluids 41 (1), 4775.CrossRefGoogle Scholar
Anagnostopoulos, P. 2000 a Numerical study of the flow past a cylinder excited transversely to the incident stream. Part 1. Lock-in zone, hydrodynamic forces and wake geometry. J. Fluids Struct. 14 (6), 819851.CrossRefGoogle Scholar
Anagnostopoulos, P. 2000 b Numerical study of the flow past a cylinder excited transversely to the incident stream. Part 2. Timing of vortex shedding, aperiodic phenomena and wake parameters. J. Fluids Struct. 14 (6), 853882.CrossRefGoogle Scholar
Bearman, P.W. 2011 Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27 (5-6), 648658.CrossRefGoogle Scholar
Bird, R.B., Armstrong, R.C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics, 2nd edn. Wiley.Google Scholar
Bishop, R.E.D. & Hassan, A.Y. 1964 a The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. Lond. A Math. Phys. Sci. 277 (1368), 3250.Google Scholar
Bishop, R.E.D. & Hassan, A.Y. 1964 b The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. Lond. A Math. Phys. Sci. 277 (1368), 5175.Google Scholar
Blackburn, H.M. & Henderson, R.D. 1999 A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255286.CrossRefGoogle Scholar
Boersma, P.R., Zhao, J., Rothstein, J.P. & Modarres-Sadeghi, Y. 2021 Experimental evidence of vortex-induced vibrations at subcritical Reynolds numbers. J. Fluid Mech. 922, R3.CrossRefGoogle Scholar
Bourguet, R. & Jacono, D.L. 2015 In-line flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 781, 127165.CrossRefGoogle Scholar
Bourguet, R., Karniadakis, G.E. & Triantafyllou, M.S. 2011 Vortex-induced vibrations of a long flexible cylinder in shear flow. J. Fluid Mech. 677, 342382.CrossRefGoogle Scholar
Cadot, O. 2001 Partial roll-up of a viscoelastic Kármán street. Eur. J. Mech. B/Fluids 20 (1), 145153.CrossRefGoogle Scholar
Carberry, J., Sheridan, J. & Rockwell, D. 2001 Forces and wake modes of an oscillating cylinder. J. Fluids Struct. 15 (3-4), 523532.CrossRefGoogle Scholar
Carberry, J., Sheridan, J. & Rockwell, D. 2005 Controlled oscillations of a cylinder: forces and wake modes. J. Fluid Mech. 538, 3169.CrossRefGoogle Scholar
Chhabra, R.P. & Richardson, J.F. 2011 Non-Newtonian Flow and Applied Rheology: Engineering Applications. Butterworth-Heinemann.Google Scholar
Comminal, R., Hattel, J.H., Alves, M.A. & Spangenberg, J. 2016 Vortex behavior of the Oldroyd-B fluid in the 4-1 planar contraction simulated with the streamfunction-log-conformation formulation. J. Non-Newtonian Fluid Mech. 237, 115.CrossRefGoogle Scholar
Dahl, J.M., Hover, F.S., Triantafyllou, M.S., Dong, S. & Karniadakis, G.E. 2007 Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces. Phys. Rev. Lett. 99 (14), 144503.CrossRefGoogle ScholarPubMed
Dahl, J.M., Hover, F.S., Triantafyllou, M.S. & Oakley, O.H. 2010 Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers. J. Fluid Mech. 643, 395424.CrossRefGoogle Scholar
Dey, A.A., Modarres-Sadeghi, Y. & Rothstein, J.P. 2017 Experimental observation of viscoelastic fluid–structure interactions. J. Fluid Mech. 813, R5.CrossRefGoogle Scholar
Dey, A.A., Modarres-Sadeghi, Y. & Rothstein, J.P. 2018 Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution. Phys. Rev. Fluids 3 (6), 063301.CrossRefGoogle Scholar
Gabbai, R.D. & Benaroya, H. 2005 An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282 (3–5), 575616.CrossRefGoogle Scholar
Govardhan, R. & Williamson, C.H.K. 2000 Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130.CrossRefGoogle Scholar
Griffin, O.M. & Ramberg, S.E. 1974 The vortex-street wakes of vibrating cylinders. J. Fluid Mech. 66 (3), 553576.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405 (6782), 5355.CrossRefGoogle Scholar
Hamid, F., Sasmal, C. & Chhabra, R.P. 2022 Dynamic mode decomposition analysis and fluid-mechanical aspects of viscoelastic fluid flows past a cylinder in laminar vortex shedding regime. Phys. Fluids 34 (10), 103114.CrossRefGoogle Scholar
James, D.F. 2009 Boger fluids. Annu. Rev. Fluid Mech. 41, 129142.CrossRefGoogle Scholar
Jones, G.W. Jr. 1968 Unsteady lift forces generated by vortex shedding about a large, stationary, and oscillating cylinder at high Reynolds numbers. NASA Tech. Rep. TM-X-61214.Google Scholar
Karniadakis, G.E. & Triantafyllou, G.S. 1989 Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441469.CrossRefGoogle Scholar
Khan, M.B., Sasmal, C. & Chhabra, R.P. 2020 Flow and heat transfer characteristics of a rotating cylinder in a FENE-P type viscoelastic fluid. J. Non-Newtonian Fluid Mech. 282, 104333.CrossRefGoogle Scholar
Konstantinidis, E., Zhao, J., Leontini, J., Lo Jacono, D. & Sheridan, J. 2019 Excitation and damping fluid forces on a cylinder undergoing vortex-induced vibration. Front. Phys. 7, 185.CrossRefGoogle Scholar
Koopmann, G.H. 1967 The vortex wakes of vibrating cylinders at low Reynolds numbers. J. Fluid Mech. 28 (3), 501512.CrossRefGoogle Scholar
Kumar, S., Lopez, C., Probst, O., Francisco, G., Askari, D. & Yang, Y. 2013 Flow past a rotationally oscillating cylinder. J. Fluid Mech. 735, 307346.CrossRefGoogle Scholar
Kumar, S., Navrose, N. & Mittal, S. 2016 Lock-in in forced vibration of a circular cylinder. Phys. Fluids 28 (11), 113605.CrossRefGoogle Scholar
Kundu, P.K., Cohen, I.M. & Dowling, D.R. 2015 Fluid Mechanics. Academic.Google Scholar
Kutz, J.N., Brunton, S.L., Brunton, B.W. & Proctor, J.L. 2016 Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM.CrossRefGoogle Scholar
Leontini, J.S., Stewart, B.E., Thompson, M.C. & Hourigan, K. 2006 Wake state and energy transitions of an oscillating cylinder at low Reynolds number. Phys. Fluids 18 (6), 067101.CrossRefGoogle Scholar
Malkin, A.Y. & Isayev, A.I. 2022 Rheology: Concepts, Methods, and Applications. Elsevier.Google Scholar
McKinley, G.H., Pakdel, P. & Öztekin, A. 1996 Rheological and geometric scaling of purely elastic flow instabilities. J. Non-Newtonian Fluid Mech. 67, 1947.CrossRefGoogle Scholar
Meneghini, J.R. & Bearman, P.W. 1995 Numerical simulation of high amplitude oscillatory flow about a circular cylinder. J. Fluids Struct. 9 (4), 435455.CrossRefGoogle Scholar
Morse, T.L. & Williamson, C.H.K. 2009 Prediction of vortex-induced vibration response by employing controlled motion. J. Fluid Mech. 634, 539.CrossRefGoogle Scholar
Nobari, M.R.H. & Naderan, H. 2006 A numerical study of flow past a cylinder with cross flow and inline oscillation. Comput. Fluids 35 (4), 393415.CrossRefGoogle Scholar
Oldroyd, J.G. 1950 On the formulation of rheological equations of state. Proc. R. Soc. Lond. A Math. Phys. Sci. 200 (1063), 523541.Google Scholar
Oliveira, P.J. 2001 Method for time-dependent simulations of viscoelastic flows: vortex shedding behind cylinder. J. Non-Newtonian Fluid Mech. 101 (1-3), 113137.CrossRefGoogle Scholar
Pakdel, P. & McKinley, G.H. 1996 Elastic instability and curved streamlines. Phys. Rev. Lett. 77 (12), 2459.CrossRefGoogle ScholarPubMed
Peng, S., Li, J.-Y., Xiong, Y.-L., Xu, X.-Y. & Yu, P. 2021 Numerical simulation of two-dimensional unsteady Giesekus flow over a circular cylinder. J. Non-Newtonian Fluid Mech. 294, 104571.CrossRefGoogle Scholar
Phan-Thien, N. & Mai-Duy, N. 2013 Understanding Viscoelasticity: An Introduction to Rheology. Springer.CrossRefGoogle Scholar
Pimenta, F. & Alves, M.A. 2016 RheoTool. Available at: https://github.com/fppimenta/rheoTool.Google Scholar
Richter, D., Iaccarino, G. & Shaqfeh, E.S.G. 2010 Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers. J. Fluid Mech. 651, 415442.CrossRefGoogle Scholar
Sahin, C. & Atalik, K. 2019 Comparison of inelastic and elastic non-newtonian effects on the flow around a circular cylinder in periodic vortex shedding. J. Non-Newtonian Fluid Mech. 263, 114.CrossRefGoogle Scholar
Sánchez, H.A.C., Jovanović, M.R., Kumar, S., Morozov, A., Shankar, V., Subramanian, G. & Wilson, H.J. 2022 Understanding viscoelastic flow instabilities: Oldroyd-B and beyond. J. Non-Newtonian Fluid Mech. 302, 104742.CrossRefGoogle Scholar
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19 (4), 389447.CrossRefGoogle Scholar
Schmid, P.J. 2011 Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50 (4), 11231130.CrossRefGoogle Scholar
Shaqfeh, E.S.G. & Khomami, B. 2021 The Oldroyd-B fluid in elastic instabilities, turbulence and particle suspensions. J. Non-Newtonian Fluid Mech. 298, 104672.CrossRefGoogle Scholar
Steinberg, V. 2021 Elastic turbulence: an experimental view on inertialess random flow. Annu. Rev. Fluid Mech. 53, 2758.CrossRefGoogle Scholar
Triantafyllou, M.S., Bourguet, R., Dahl, J. & Modarres-Sadeghi, Y. 2016 Vortex-induced vibrations. Springer Handbook of Ocean Engineering, pp. 819–850. Springer.CrossRefGoogle Scholar
Wang, Z., Fan, D. & Triantafyllou, M.S. 2021 Illuminating the complex role of the added mass during vortex induced vibration. Phys. Fluids 33 (8), 085120.CrossRefGoogle Scholar
Weller, H.G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.CrossRefGoogle Scholar
Williamson, C.H.K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.CrossRefGoogle Scholar
Williamson, C.H.K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.CrossRefGoogle Scholar
Xiong, Y., Peng, S., Zhang, M. & Yang, D. 2019 Numerical study on the vortex-induced vibration of a circular cylinder in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 272, 104170.CrossRefGoogle Scholar
Zdravkovich, M.M. & Bearman, P.W. 1997 Flow Around Circular Cylinders—Volume 1: Fundamentals. Oxford Science Publications.CrossRefGoogle Scholar
Zhu, H., Zhang, C. & Liu, W. 2019 Wake-induced vibration of a circular cylinder at a low Reynolds number of 100. Phys. Fluids 31 (7), 073606.CrossRefGoogle Scholar