Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T20:55:29.888Z Has data issue: false hasContentIssue false

On the flow separation mechanism in the inverse Leidenfrost regime

Published online by Cambridge University Press:  09 June 2020

J. Arrieta
Affiliation:
Instituto Mediterráneo de Estudios Avanzados, UIB-CSIC, 07190, Esporles, Baleares, Spain
A. Sevilla*
Affiliation:
Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid. Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
*
Email address for correspondence: [email protected]

Abstract

The inverse Leidenfrost regime occurs when a heated object in relative motion with a liquid is surrounded by a stable vapour layer, drastically reducing the hydrodynamic drag at large Reynolds numbers due to a delayed separation of the flow. To elucidate the physical mechanisms that control separation, here we report a numerical study of the boundary layer equations describing the liquid–vapour flow around a solid sphere whose surface temperature is above the Leidenfrost point. Our analysis reveals that the dynamics of the thin layer of vaporised liquid controls the downstream evolution of the flow, which cannot be properly described substituting the vapour layer by an effective slip length. In particular, the dominant mechanism responsible for the separation of the flow is the onset of vapour recirculation caused by the adverse pressure gradient in the rearward half of the sphere, leading to an explosive growth of the vapour-layer thickness due to the accumulation of vapour mass. Buoyancy forces are shown to have an important effect on the onset of recirculation, and thus on the separation angle. Our results compare favourably with previous experiments.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, E. 1972 Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54 (3), 565575.CrossRefGoogle Scholar
Anderson, D. A., Tannehill, J. C. & Pletcher, R. H. 1984 Computational Fluid Mechanics and Heat Transfer. Hemisphere.Google Scholar
Bang, K. H. 1994 Numerical prediction of forced convection film boiling heat transfer from a sphere. Intl J. Heat Mass Transfer 37 (16), 24152424.CrossRefGoogle Scholar
Berry, J. D., Vakarelski, I. U., Chan, D. Y. C. & Thoroddsen, S. T. 2017 Navier slip model of drag reduction by Leidenfrost vapor layers. Phys. Fluids 29 (10), 18.CrossRefGoogle Scholar
Blanco, A. & Magnaudet, J. 1995 The structure of the high Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 12651274.CrossRefGoogle Scholar
Bradfield, W. S., Barkdoll, R. O. & Byrne, J. T. 1962 Some effects of boiling on hydrodynamic drag. Intl J. Heat Mass Transfer 5, 615622.CrossRefGoogle Scholar
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42 (1), 183203.CrossRefGoogle Scholar
Crank, J. 1984 Free and Moving Boundary Problems, 1st edn. Oxford University Press.Google Scholar
Dhir, V. K. 1998 Boiling heat transfer. Annu. Rev. Fluid Mech. 30 (1), 365401.CrossRefGoogle Scholar
Epstein, M. & Hauser, G. M. 1980 Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder. Intl J. Heat Mass Transfer 23, 179189.CrossRefGoogle Scholar
Goldstein, S. 1948 On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Maths 1 (1), 4369.CrossRefGoogle Scholar
Gruncell, B. R. K., Sandham, N. D. & McHale, G. 2013 Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay. Phys. Fluids 25 (4), 043601.CrossRefGoogle Scholar
Leal, L. G. 1989 Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fluids A 1, 124131.CrossRefGoogle Scholar
Liu, C. & Theofanous, T. G.1996 Film boiling on spheres in single- and two-phase flows. Tech. Rep. US Department of Energy.Google Scholar
McHale, G., Flynn, M. R. & Newton, M. I. 2011 Plastron induced drag reduction and increased slip on a superhydrophobic sphere. Soft Matt. 7, 1010010107.CrossRefGoogle Scholar
Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.CrossRefGoogle Scholar
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45 (1), 197215.CrossRefGoogle Scholar
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89109.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2001 Boundary Layer Theory. Springer.Google Scholar
Vakarelski, I. U., Berry, J. D., Chan, D. Y. C. & Thoroddsen, S. T. 2016 Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids. Phys. Rev. Lett. 117 (11), 15.CrossRefGoogle ScholarPubMed
Vakarelski, I. U., Chan, D. Y. C. & Thoroddsen, S. T. 2014 Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water. Soft Matt. 10 (31), 56625668.CrossRefGoogle ScholarPubMed
Vakarelski, I. U., Klaseboer, E., Jetly, A., Mansoor, M. M., Aguirre-Pablo, A. A., Chan, D. Y. C. & Thoroddsen, S. T. 2017a Self-determined shapes and velocities of giant near-zero drag gas cavities. Sci. Adv. 3 (9), 18.CrossRefGoogle Scholar
Vakarelski, I. U., Klaseboer, E., Jetly, A., Mansoor, M. M., Aguirre-Pablo, A. A., Chan, D. Y. C. & Thoroddsen, S. T. 2017b Self-determined shapes and velocities of giant near-zero drag gas cavities. Sci. Adv. 3 (9), e1701558.CrossRefGoogle Scholar
Vakarelski, I. U., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. 2011 Drag reduction by Leidenfrost vapor layers. Phys. Rev. Lett. 106 (21), 214501.CrossRefGoogle ScholarPubMed
Wilson, S. D. R. 1979 Steady and transient film boiling on a sphere in forced convection. Intl J. Heat Mass Transfer 22, 207218.CrossRefGoogle Scholar
Zvirin, Y., Hewitt, G. R. & Kenning, D. B. R. 1990 Boiling on free-falling spheres: drag and heat transfer coefficients. Exp. Heat Transfer 3 (3), 185214.CrossRefGoogle Scholar