Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T14:47:01.733Z Has data issue: false hasContentIssue false

Gravity-driven granular free-surface flow around a circular cylinder

Published online by Cambridge University Press:  27 February 2013

X. Cui*
Affiliation:
Aerospace Engineering, Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK
J. M. N. T. Gray
Affiliation:
School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Manchester M13 9PL, UK
*
Email address for correspondence: [email protected]

Abstract

Snow avalanches and other hazardous geophysical granular flows, such as debris flows, lahars and pyroclastic flows, often impact on obstacles as they flow down a slope, generating rapid changes in the flow height and velocity in their vicinity. It is important to understand how a granular material flows around such obstacles to improve the design of deflecting and catching dams, and to correctly interpret field observations. In this paper small-scale experiments and numerical simulations are used to investigate the supercritical gravity-driven free-surface flow of a granular avalanche around a circular cylinder. Our experiments show that a very sharp bow shock wave and a stagnation point are generated in front of the cylinder. The shock standoff distance is accurately reproduced by shock-capturing numerical simulations and is approximately equal to the reciprocal of the Froude number, consistent with previous approximate results for shallow-water flows. As the grains move around the cylinder the flow expands and the pressure gradients rapidly accelerate the particles up to supercritical speeds again. The internal pressure is not strong enough to immediately push the grains into the space behind the cylinder and instead a grain-free region, or granular vacuum, forms on the lee side. For moderate upstream Froude numbers and slope inclinations, the granular vacuum closes up rapidly to form a triangular region, but on steeper slopes both experiments and numerical simulations show that the pinch-off distance moves far downstream.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akers, B. & Bokhove, O. 2008 Hydraulic flow through a channel contraction: multiple steady states. Phys. Fluids 20, 056601.Google Scholar
Ames Research Staff, 1953 Equations, tables and charts for compressible flow. Tech. Rep. 1135. NACA.Google Scholar
Anderson, J. D. 1995 Computational Fluid Dynamics. McGraw-Hill.Google Scholar
Baroudi, D., Sovilla, B. & Thibert, E. 2011 Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements. J. Glaciol. 57, 277288.Google Scholar
Belouaggadia, N., Olivier, H. & Brun, R. 2008 Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows. J. Fluid Mech. 607, 167197.Google Scholar
Börzsönyi, T., Halsey, T. C. & Ecke, E. 2008 Avalanche dynamics on a rough inclined bed. Phys. Rev. E 78, 011306.CrossRefGoogle Scholar
Boudet, J. F., Amarouchene, Y., Bonnier, B. & Kellay, H. 2007 The granular jump. J. Fluid Mech. 572, 413431.Google Scholar
Boudet, J. F. & Kellay, H. 2010 Drag coefficient for a circular obstacle in a quasi-two-dimensional dilute supersonic granular flow. Phys. Rev. Lett. 105, 104501.Google Scholar
Branney, M. J. & Kokelaar, B. P. 1992 A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull. Volcanol. 54, 504520.CrossRefGoogle Scholar
Brennen, C. E., Sieck, K. & Paslaski, J. 1983 Hydraulic jumps in granular material flow. Powder Technol. 35, 3137.CrossRefGoogle Scholar
Buchholtz, V. & Pöschel, T. 1998 Interaction of a granular stream with an obstacle. Granul. Matt. 1, 3341.Google Scholar
Cole, P. D., Calder, E. S., Druitt, T. H., Hoblitt, R., Robertson, R., Sparks, R. S. J. & Young, S. R. 1998 Pyroclastic flows generated by gravitational instability of the 1996–97 lava dome of Soufriere Hills Volcano, Montserrat. Geophys. Res. Lett. 25.CrossRefGoogle Scholar
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Interscience.Google Scholar
Courant, R. & Hilbert, D. 1962 Methods of Mathematical Physics, vol. II. Interscience.Google Scholar
Cui, X., Gray, J. M. N. T. & Johannesson, T. 2007 Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. 112, F04012.Google Scholar
Faug, T., Gauer, P., Lied, K. & Naaim, M. 2008 Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. 113, F03009.Google Scholar
Forbes, L. K. & Schwartz, L. W. 1981 Supercritical flow past blunt bodies in shallow water. Z. Angew. Math. Phys. 32, 314328.CrossRefGoogle Scholar
Forterre, Y. 2006 Kapiza waves as a test for three-dimensional granular flow rheology. J. Fluid Mech. 563, 123132.Google Scholar
Godunov, S. K. 1959 A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik. 47, 271306.Google Scholar
Gray, J. M. N. T. 2001 Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 129.CrossRefGoogle Scholar
Gray, J. M. N. T. & Cui, X. 2007 Weak, strong and detached oblique shocks in gravity driven granular free-surface flows. J. Fluid Mech. 579, 113136.Google Scholar
Gray, J. M. N. T. & Hutter, K. 1997 Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9, 341345.Google Scholar
Gray, J. M. N. T. & Kokelaar, B. P. 2010 Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652, 105137.CrossRefGoogle Scholar
Gray, J. M. N. T. & Tai, Y. C. 1998 Particle size segregation, granular shocks and stratification patterns. In Physics of Dry Granular Media (ed. Herrmann, H. J., Hovi, J. P. & Luding, S.). NATO ASI Series, vol. 350, pp. 697702.Google Scholar
Gray, J. M. N. T., Tai, Y. C. & Noelle, S. 2003 Shock waves, dead-zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161181.Google Scholar
Gray, J. M. N. T., Wieland, M. & Hutter, K. 1999 Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. A 455, 18411874.Google Scholar
Grigourian, S. S., Eglit, M. E. & Iakimov, I. L. 1967 New statement and solution of the problem of the motion of snow avalanche. Snow, Avalanches & Glaciers. Tr. Vysokogornogo Geofizich. Inst. 12, 104113.Google Scholar
Hákonardóttir, K. M. & Hogg, A. J. 2005 Oblique shocks in rapid granular flows. Phys. Fluids 17, 0077101.Google Scholar
Hákonardóttir, K. M., Hogg, A. J., Batey, J. & Woods, A. W. 2003 Flying avalanches. Geophys. Res. Lett. 30, 2191.Google Scholar
Hauksson, S., Pagliardi, M., Barbolini, M. & Jóhannesson, T. 2007 Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg. Sci. Technol. 49, 5463.CrossRefGoogle Scholar
Hayes, W. D. & Probstein, R. F. 1966 Hypersonic Flow Theory. Academic.Google Scholar
Heil, P., Rericha, E. C., Goldman, D. I. & Swinney, H. L. 2004 Mach cone in a shallow granular fluid. Phys. Rev. E 70, 060301.Google Scholar
Hida, K. 1953 An approximate study of the detached shock wave in front of a circular cylinder and a sphere. J. Phys. Soc. Japan 8, 740745.CrossRefGoogle Scholar
Hu, K., Wei, F. & Li, Y. 2011 Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surf. Process. Landf. 36, 12681278.Google Scholar
Hungr, O. & Morgenstern, N. R. 1984a Experiments on the flow behaviour of granular materials at high velocity in an open channel flow. Geotechnique 34, 405413.Google Scholar
Hungr, O. & Morgenstern, N. R. 1984b High velocity ring shear tests on sand. Geotechnique 34, 415421.Google Scholar
Ippen, A. T. 1949 Mechanics of supercritical flow. ASCE 116, 268295.Google Scholar
Iverson, R. M. 1997 The physics of debris-flows. Rev. Geophys. 35, 245296.CrossRefGoogle Scholar
Iverson, R. M. & Denlinger, R. P. 2001 Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J. Geophys. Res. 106 (B1), 553566.Google Scholar
Jiang, G. S., Levy, D., Lin, C. T., Osher, S. & Tadmor, E. 1998 High-resolution nonoscillatory central schemes with non-staggerred grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35 (6), 21472168.Google Scholar
Jóhannesson, T. 2001 Run-up of two avalanches on the deflecting dams at Flateyri, northwest Iceland. Ann. Glaciol. 32, 350354.Google Scholar
Jóhannesson, T., Gauer, P., Issler, P. & Lied, K. 2009 The design of avalanche protection dams: recent practical and theoretical developments. Tech. Rep. EUR 23339. European Commission.Google Scholar
Johnson, C. G. & Gray, J. M. N. T. 2011 Granular jets and hydraulic jumps on an inclined plane. J. Fluid Mech. 675, 87116.Google Scholar
Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G. & Gray, J. M. N. T. 2012 Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117, F01032.Google Scholar
Jomelli, V. & Bertran, P. 2001 Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geografis. Annal. Ser. A, Phys. Geograph. 83, 1528.Google Scholar
Kim, C. S. 1956 Experimental studies of supersonic flow past a circular cylinder. J. Phys. Soc. Japan 11, 439445.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
LeVeque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.Google Scholar
Lighthill, M. J. 1957 Dynamics of a dissociating gas. part 1. equilibrium flow. J. Fluid Mech. 2, 132.CrossRefGoogle Scholar
Lin, C. C. & Rubinov, S. I. 1948 On the flow behind curved shocks. J. Math. Phys. 27, 105129.Google Scholar
Lobb, R. K. 1964 Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities. In The High Temperature Aspects of Hypersonic Flow (ed. Nelson, W. C.), pp. 519527. Pergamon.Google Scholar
Louie, K. & Ockendon, J. R. 1991 Mathematical aspects of the theory of inviscid hypersonic flow. Phil. Trans. R. Soc. A 335, 121138.Google Scholar
Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P. & Bristeau, M. O. 2007 Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. 112, F02017.Google Scholar
Mangeney-Castelnau, A., Vilotte, J. P., Bristeau, M. O., Perthame, B., Bouchut, F., Simeoni, C. & Yerneni, S. 2003 Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108, 2527.Google Scholar
Mignot, E. & Riviere, N. 2010 Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow. Phys. Fluids 22, 117105.Google Scholar
Nessyahu, H. & Tadmor, E. 1990 Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408463.Google Scholar
Pouliquen, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.Google Scholar
Preiswerk, E. 1938 Anwendung gasdynamischer Methoden auf Wasserströmungen mit freier Oberfläche. PhD thesis, ETH Zürich.Google Scholar
Rericha, E. C., Bizon, C., Shattuck, M. & Swinney, H. 2002 Shocks in supersonic sand. Phys. Rev. Lett. 88, 014302.Google Scholar
Rouse, H. 1938 Fluid Mechanics for Hydraulic Engineers. McGraw-Hill.Google Scholar
Savage, S. 1979 Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 5396.Google Scholar
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.Google Scholar
Shinbrot, T. & Muzzio, F. J. 1998 Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81 (20), 43654368.Google Scholar
Sigurdsson, F., Tomasson, G. G. & Sandersen, F. 1998 Avalanche defences for flateyri, iceland. from hazard evaluation to construction of defences. Tech. Rep. 203. Norw. Geotech. Inst., Oslo.Google Scholar
Sovilla, B., Schaer, M., Kern, M. & Bartelt, P. 2008 Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. J. Geophys. Res. 114, F01010.Google Scholar
Tai, Y. C., Gray, J. M. N. T., Hutter, K. & Noelle, S. 2001 Flow of dense avalanches past obstructions. Annal. Glaciol. 32, 281284.CrossRefGoogle Scholar
Tai, Y. C., Wang, Y. Q., Gray, J. M. N. T. & Hutter, K. 1999 Methods of similitude in granular avalanche flows. In Advances In Cold-Region Thermal Engineering And Sciences: Technological, Environmental and Climatological Impact (ed. Hutter, K., Wang, Y. Q. & Beer, H.), Lecture Notes in Physics, vol. 533, pp. 415428. Springer.Google Scholar
Vallance, J. W. 2000 Lahars. In Encyclopedia of Volcanoes (ed. Sigurdsson, H.), pp. 601616. Academic.Google Scholar
Vinokur, M. 1974 Conservation equations of gas dynamics in curvilinear coordinate systems. J. Comput. Phys. 14, 105125.CrossRefGoogle Scholar
Viviand, H. 1974 Conservative forms of gas dynamic equations. Rech. Aerosp. 1971-1, 65–68.Google Scholar
Vreman, A. W., Al-Tarazi, M., Kuipers, J. A. M., Van Sint Annaland, M. & Bokhove, O. 2007 Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech. 578, 233269.Google Scholar
Wassgren, C. R., Cordova, J. A., Zenit, R. & Karion, A. 2003 Dilute granular flow around an immersed cylinder. Phys. Fluids 15 (11), 33183330.Google Scholar
Wieland, M., Gray, J. M. N. T. & Hutter, K. 1999 Channelised free surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73100.Google Scholar

Cui and Gray supplementary movie

Movie showing the flow of a sand avalanche past a circular cylinder as in figures 7 and 8.

Download Cui and Gray supplementary movie(Video)
Video 771.6 KB

Cui and Gray supplementary movie

Movie showing the development of the steady state non-pareille avalanche

Download Cui and Gray supplementary movie(Video)
Video 2.8 MB