Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:50:29.680Z Has data issue: false hasContentIssue false

Dynamic wetting failure and hydrodynamic assist in curtain coating

Published online by Cambridge University Press:  28 October 2016

Chen-Yu Liu
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
Eric Vandre
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
Marcio S. Carvalho*
Affiliation:
Department of Mechanical Engineering, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil
Satish Kumar*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Dynamic wetting failure in curtain coating of Newtonian liquids is studied in this work. A hydrodynamic model accounting for air flow near the dynamic contact line (DCL) is developed to describe two-dimensional (2D) steady wetting and to predict the onset of wetting failure. A hybrid approach is used where air is described by a one-dimensional model and liquid by a 2D model, and the resulting hybrid formulation is solved with the Galerkin finite element method. The results reveal that the delay of wetting failure in curtain coating – often termed hydrodynamic assist – mainly arises from the hydrodynamic pressure generated by the inertia of the impinging curtain. This pressure leads to a strong capillary-stress gradient that pumps air away from the DCL and thus increases the critical substrate speed for wetting failure. Although the parameter values used in the model are different from those in experiments due to computational limitations, the model is able to capture the experimentally observed non-monotonic behaviour of the critical substrate speed as the feed flow rate increases (Blake et al., Phys. Fluids, vol. 11, 1999, p. 1995–2007). The influence of insoluble surfactants is also investigated, and the results show that Marangoni stresses tend to thin the air film and increase air-pressure gradients near the DCL, thereby promoting the onset of wetting failure. In addition, Marangoni stresses reduce the degree of hydrodynamic assist in curtain coating, suggesting a possible mechanism for experimental observations reported by Marston et al. (Exp. Fluids, vol. 46, 2009, pp. 549–558).

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benkreira, H. 2004 The effect of substrate roughness on air entrainment in dip coating. Chem. Engng Sci. 59 (13), 27452751.Google Scholar
Benkreira, H. & Ikin, J. B. 2010 Dynamic wetting and gas viscosity effects. Chem. Engng Sci. 65 (5), 17901796.Google Scholar
Benkreira, H. & Khan, M. I. 2008 Air entrainment in dip coating under reduced air pressures. Chem. Engng Sci. 63 (2), 448459.Google Scholar
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299 (1), 113.Google Scholar
Blake, T. D., Bracke, M. & Shikhmurzaev, Y. D. 1999 Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle. Phys. Fluids 11 (8), 19952007.Google Scholar
Blake, T. D., Clarke, A. & Ruschak, K. J. 1994 Hydrodynamic assist of dynamic wetting. AIChE J. 40 (2), 229242.Google Scholar
Blake, T. D., Dobson, R., Batts, G. N. & Harrison, W. J.1995. Coating processes. US Patent 5391401.Google Scholar
Blake, T. D., Dobson, R. A. & Ruschak, K. J. 2004 Wetting at high Capillary numbers. J. Colloid Interface Sci. 279 (1), 198205.Google Scholar
Blake, T. D., Fernandez-Toledano, J.-C., Doyen, G. & De Coninck, J. 2015 Forced wetting and hydrodynamic assist. Phys. Fluids 27 (11), 112101.Google Scholar
Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282 (5738), 489491.Google Scholar
Brown, D. R. 1961 A study of the behaviour of a thin sheet of moving liquid. J. Fluid Mech. 10 (2), 297305.Google Scholar
Burley, R. & Kennedy, B. S. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 31, 901911.Google Scholar
Campana, D. M., Di Paolo, J. & Saita, F. A. 2004 A 2-D model of Rayleigh instability in capillary tubes — surfactant effects. Intl J. Multiphase Flow 30, 431454.Google Scholar
Campana, D. M., Ubal, S., Giavedoni, M. D. & Saita, F. A. 2011 A deeper insight into the dip coating process in the presence of insoluble surfactants: a numerical analysis. Phys. Fluids 23 (5), 052102.Google Scholar
Carvalho, M. S. & Scriven, L. E. 1997 Flows in forward deformable roll coating gaps: comparison between spring and plane-strain models of roll cover. J. Comput. Phys. 138 (2), 449479.CrossRefGoogle Scholar
Chan, T. S., Srivastava, S., Marchand, A., Andreotti, B., Biferale, L., Toschi, F. & Snoeijer, J. H. 2013 Hydrodynamics of air entrainment by moving contact lines. Phys. Fluids 25 (7), 074105.Google Scholar
Chang, H.-K., Shih, C.-J., Liu, T.-J. & Tiu, C. 2012 Curtain coating of dilute suspensions. Polym. Engng Sci. 52 (1), 111.Google Scholar
Christodoulou, K. N. & Scriven, L. E. 1989 The fluid mechanics of slide coating. J. Fluid Mech. 208, 321354.Google Scholar
Clarke, A. 1995 The application of particle tracking velocimetry and flow visualization to curtain coating. Chem. Engng Sci. 50 (15), 23972407.Google Scholar
Clarke, A. & Stattersfield, E. 2006 Direct evidence supporting nonlocal hydrodynamic influence on the dynamic contact angle. Phys. Fluids 18 (4), 048106.Google Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.Google Scholar
Decent, S. P. 2008 A simplified model of the onset of air entrainment in curtain coating at small Capillary number. Chem. Engng Res. Des. 86 (3), 311323.Google Scholar
Dussan, V. E. B. 1976 The moving contact line: the slip boundary condition. J. Fluid Mech. 77 (4), 665684.Google Scholar
Eggers, J. 2005 Existence of receding and advancing contact lines. Phys. Fluids 17 (8), 082106.Google Scholar
Hughes, D. J.1970 Method for simultaneously applying a plurality of coated layers by forming a stable multilayer free falling vertical curtain. US Patent 3508947.Google Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.CrossRefGoogle Scholar
Jacqmin, D. 2004 Onset of wetting failure in liquid–liquid systems. J. Fluid Mech. 517, 209228.Google Scholar
Kistler, S. F.1985 The fluid mechanics of curtain coating and related viscous free surface flows with contact lines. PhD thesis, University of Minnesota.Google Scholar
Kistler, S. F. 1993 Hydrodynamics of wetting. In Wettability (ed. Berg, J. C.), pp. 311429. Marcel Dekker.Google Scholar
Kistler, S. F. & Scriven, L. E. 1984 Coating flow theory by finite element and asymptotic analysis of the Navier–Stokes system. Intl J. Numer. Meth. Fluids 4, 207229.Google Scholar
Kumar, S. & Matar, O. K. 2004 On the Faraday instability in a surfactant-covered liquid. Phys. Fluids 16 (1), 3946.Google Scholar
Ledesma-Aguilar, R., Hernandez-Machado, A. & Pagonabarraga, I. 2013 Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces. Phys. Rev. Lett. 110 (26), 264502.CrossRefGoogle ScholarPubMed
Liu, C.-Y., Vandre, E., Carvalho, M. S. & Kumar, S. 2016 Dynamic wetting failure in surfactant solutions. J. Fluid Mech. 789, 285309.Google Scholar
Lowndes, J. 1980 The numerical simulation of the steady movement of a fluid meniscus in a capillary tube. J. Fluid Mech. 101 (3), 631646.Google Scholar
Lukyanov, A. V. & Shikhmurzaev, Y. D. 2007 Effect of flow field and geometry on the dynamic contact angle. Phys. Rev. E 75 (5), 051604.Google Scholar
Marchand, A., Chan, T. S., Snoeijer, J. H. & Andreotti, B. 2012 Air entrainment by contact lines of a solid plate plunged into a viscous fluid. Phys. Rev. Lett. 108 (20), 204501.Google Scholar
Marston, J. O., Decent, S. P. & Simmons, M. J. H. 2006 Hysteresis and non-uniqueness in the speed of the onset of instability in curtain coating. J. Fluid Mech. 569, 349363.Google Scholar
Marston, J. O., Hawkins, V., Decent, S. P. & Simmons, M. J. H. 2009 Influence of surfactant upon air entrainment hysteresis in curtain coating. Exp. Fluids 46, 549558.Google Scholar
Marston, J. O., Simmons, M. J. H. & Decent, S. P. 2007 Influence of viscosity and impingement speed on intense hydrodynamic assist in curtain coating. Exp. Fluids 42, 483488.Google Scholar
Miyamoto, K. & Katagiri, Y. 1997 Curtain coating. In Liquid Film Coating (ed. Kistler, S. & Schweizer, P. M.), pp. 463494. Chapman & Hall.Google Scholar
Nam, J. & Carvalho, M. S. 2009 Mid-gap invasion in two-layer slot coating. J. Fluid Mech. 631, 397417.Google Scholar
Ramé, E. 2001 The spreading of surfactant-laden liquids with surfactant transfer through the contact line. J. Fluid Mech. 440, 205234.Google Scholar
Sbragaglia, M., Sugiyama, K. & Biferale, L. 2008 Wetting failure and contact line dynamics in a Couette flow. J. Fluid Mech. 614, 471493.Google Scholar
Schunk, P. R. & Scriven, L. E. 1997 Surfactant effects in coating processes. In Liquid Film Coating (ed. Kistler, S. & Schweizer, P. M.), pp. 495536. Chapman & Hall.Google Scholar
Scriven, L. E. & Sternling, C. V. 1960 The Marangoni effects. Nature 187, 186188.Google Scholar
Shikhmurzaev, Y. D. 1997 Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211249.Google Scholar
Sibley, D. N., Nold, A. & Kalliadasis, S. 2015 The asymptotics of the moving contact line: cracking an old nut. J. Fluid Mech. 764, 445462.Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Sprittles, J. E. 2015 Air entrainment in dynamic wetting: Knudsen effects and the influence of ambient air pressure. J. Fluid Mech. 769, 444481.Google Scholar
Sui, Y., Ding, H. & Spelt, P. D. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.Google Scholar
Tricot, Y.-M. 1997 Surfactants: static and dynamic surface tension. In Liquid Film Coating (ed. Kistler, S. & Schweizer, P. M.), pp. 99136. Chapman & Hall.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2013 On the mechanism of wetting failure during fluid displacement along a moving substrate. Phys. Fluids 25 (10), 102103.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2014 Characteristics of air entrainment during dynamic wetting failure along a planar substrate. J. Fluid Mech. 747, 119140.Google Scholar
Vandre, E. A.2013 Onset of dynamic wetting failure: the mechanics of high-speed fluid displacement. PhD thesis, University of Minnesota.Google Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36 (1), 2953.Google Scholar
Wilson, M. C. T., Summers, J. L., Gaskell, P. H. & Shikhmurzaev, Y. D. 2001 Moving contact-line model and the effect of hydrodynamic assist of dynamic wetting. In IUTAM Symposium on Free Surface Flows (ed. King, A. C. & Shikhmurzaev, Y. D.), pp. 345352. Springer.Google Scholar
Wilson, M. C. T., Summers, J. L., Shikhmurzaev, Y. D., Clarke, A. & Blake, T. D. 2006 Nonlocal hydrodynamic influence on the dynamic contact angle: slip models versus experiment. Phys. Rev. E 73 (4), 041606.Google ScholarPubMed
Yamamura, M. 2007 Assisted dynamic wetting in liquid coatings. Colloids Surf. A 311, 5560.Google Scholar
Yamamura, M., Suematsu, S., Kajiwara, T. & Adachi, K. 2000 Experimental investigation of air entrainment in a vertical liquid jet flowing down onto a rotating roll. Chem. Engng Sci. 55 (5), 931942.Google Scholar