Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T16:29:34.082Z Has data issue: false hasContentIssue false

Control of baroclinic instability by submesoscale topography

Published online by Cambridge University Press:  06 November 2019

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
*
Email address for correspondence: [email protected]

Abstract

This study explores the control of mesoscale variability by topographic features with lateral scales that are less than the scale of the eddies generated by baroclinic instability. These dynamics are described using a combination of numerical simulations and an asymptotic multiscale model. The multiscale method makes it possible to express the system dynamics by a closed set of equations written entirely in terms of mesoscale variables, thereby providing a physical basis for the development of submesoscale parameterization schemes. The submesoscale topography is shown to influence such fundamental properties of mesoscale variability as the meridional eddy-induced transport and eddy kinetic energy. It is argued that the adverse influence of submesoscale topography on baroclinic instability is ultimately caused by the homogenization tendency of potential vorticity in the bottom density layer. The multiscale model formally assumes a substantial separation between the scales of interacting flow components. However, the comparison of asymptotic solutions with their submesoscale-resolving numerical counterparts indicates that the multiscale method is remarkably accurate even when scale separation is virtually non-existent.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.Google Scholar
Balmforth, N. J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.Google Scholar
Benilov, E. S. 2001 Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr. 31, 20192025.Google Scholar
Bretherton, F. P. 1966 Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc. 92, 325334.Google Scholar
Brown, J., Gulliver, L. & Radko, T. 2019 Effects of topography and orientation on the nonlinear equilibration of baroclinic instability. J. Geophys. Res. Oceans 124, doi:10.1029/2019JC015297.Google Scholar
Callies, J. 2018 Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr. 48, 19952010.Google Scholar
Charney, J. 1948 On the scale of atmospheric motions. Geophys. Publ. 17, 117.Google Scholar
Charney, J. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.Google Scholar
Chassignet, E. P. & Xu, X. 2017 Impact of horizontal resolution (1/12° to 1/50° ) on gulf stream separation, penetration, and variability. J. Phys. Oceanogr. 47, 19992021.Google Scholar
Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. 2007 Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L15606.Google Scholar
Chen, C. & Kamenkovich, I. 2013 Effects of topography on baroclinic instability. J. Phys. Oceanogr. 43, 790804.Google Scholar
Chen, C., Kamenkovich, I. & Berloff, P. 2015 On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr. 45, 927940.Google Scholar
Dewar, W. K. 1998 Topography and barotropic transport control by bottom friction. J. Mar. Res. 56, 295328.Google Scholar
Dewar, W. K., McWilliams, J. C. & Molemaker, M. J. 2015 Centrifugal instability and mixing in the California undercurrent. J. Phys. Oceanogr. 45, 12241241.Google Scholar
Dubrulle, B. & Frisch, U. 1991 Eddy viscosity of parity-invariant flow. Phys. Rev. A 43, 53555364.Google Scholar
Fox-Kemper, B., Ferrari, R. & Hallberg, R. 2008 Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38, 11451165.Google Scholar
Gama, S., Vergassola, M. & Frisch, U. 1994 Negative eddy viscosity in isotropically forced 2-dimensional flow – linear and nonlinear dynamics. J. Fluid Mech. 260, 95126.Google Scholar
Goff, J. A. & Jordan, T. H. 1988 Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J. Geophys. Res. 93, 13,589–13,608.Google Scholar
Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A. et al. 2015 Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Clim. 28, 952977.Google Scholar
Gula, J., Molemaker, M. J. & McWilliams, J. C. 2016 Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun. 7, 12811.Google Scholar
Hart, J. E. 1975 Baroclinic instability over a slope. Part I: linear theory. J. Phys. Oceanogr. 5, 625633.Google Scholar
Holloway, G. 1986 Estimation of oceanic eddy transports from satellite altimetry. Nature 323, 243244.Google Scholar
Holloway, G. 2008 Observing global ocean topostrophy. J. Geophys. Res. 113, C07054.Google Scholar
LaCasce, J., Escartin, J., Chassignet, E. P. & Xu, X. 2019 Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr. 49, 585605.Google Scholar
Levy, M., Klein, P., Treguier, A.-M., Iovino, D., Madec, G., Masson, S. & Takahashi, K. 2010 Modifications of gyre circulation by sub-mesoscale physics. Ocean Model. 34, 115.Google Scholar
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.Google Scholar
Manfroi, A. & Young, W. 2002 Stability of beta-plane Kolmogorov flow. Physica D 162, 208232.Google Scholar
Marshall, D. P., Maddison, J. R. & Berloff, P. S. 2012 A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr. 42, 539557.Google Scholar
Marshall, J. & Radko, T. 2003 Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33, 23412354.Google Scholar
Masumoto, Y., Miyazawa, Y., Tsumune, D., Tsubono, T., Kobayashi, T., Kawamura, H., Estournel, C., Marsaleix, P., Lanerolle, L., Mehra, A. et al. 2012 Oceanic dispersion simulations of 137Cs released from the Fukushima Daiichi nuclear power plant. Elements 8, 207212.Google Scholar
McGillicuddy, D. J. Jr 2016 Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci. 8, 125159.Google Scholar
McWilliams, J. C. 2008 The nature and consequences of oceanic eddies. In Ocean Modeling in an Eddying Regime, vol. 177, pp. 515. John Wiley & Sons.Google Scholar
McWilliams, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. Lond. A 472, 132.Google Scholar
Mei, C. C. & Vernescu, M. 2010 Homogenization Methods for Multiscale Mechanics. p. 330. World Scientific Publishing.Google Scholar
Meshalkin, L. & Sinai, Y. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. J. Appl. Math. Mech. 25, 17001705.Google Scholar
Nikurashin, M., Ferrari, R., Grisouard, N. & Polzin, K. 2014 The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr. 44, 29382950.Google Scholar
Nikurashin, M., Vallis, G. K. & Adcroft, A. 2013 Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci. 6, 4851.Google Scholar
Novikov, A. & Papanicolaou, G. 2001 Eddy viscosity of cellular flows. J. Fluid Mech. 446, 173198.Google Scholar
Olson, D. B. 1991 Rings in the ocean. Annu. Rev. Earth Planet. Sci. 19, 283311.Google Scholar
Pedlosky, J. 1975 On secondary baroclinic instability and the meridional scale of motion in the ocean. J. Phys. Oceanogr. 5, 603607.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. p. 710. Springer.Google Scholar
Phillips, N. A. 1951 A simple three-dimensional model for the study of large scale extra tropical flow pattern. J. Met. 8, 381394.Google Scholar
Radko, T. 2011 Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res. 69, 723752.Google Scholar
Radko, T. 2014 Applicability and failure of the flux-gradient laws in double-diffusive convection. J. Fluid Mech. 750, 3372.Google Scholar
Radko, T. 2016 On the spontaneous generation of large-scale eddy-induced patterns: the Average Eddy model. J. Fluid. Mech. 809, 316344.Google Scholar
Radko, T. 2019 Thermohaline layering on the microscale. J. Fluid Mech. 862, 672695.Google Scholar
Radko, T. & Kamenkovich, I. 2017 On the topographic modulation of large-scale eddying flows. J. Phys. Oceanogr. 47, 21572172.Google Scholar
Radko, T. D., Peixoto de Carvalho, D. & Flanagan, J. 2014 Nonlinear equilibration of baroclinic instability: the growth rate balance model. J. Phys. Oceanogr. 44, 19191940.Google Scholar
Rhines, P. B. & Young, W. R. 1982 A theory of the wind-driven circulation. Part I: mid-ocean gyres. J. Mar. Res. 40 (Suppl), 559596.Google Scholar
Robinson, A. R.(Ed.) 1983 Eddies in Marine Science, p. 609. Springer.Google Scholar
Rosso, I., Hogg, A. M., Kiss, A. E. & Gayen, B. 2015 Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys. Res. Lett. 42, 11391147.Google Scholar
Stammer, D. 1998 On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr. 28, 727739.Google Scholar
Thomas, L. N., Tandon, A. & Mahadevan, A. 2008 Sub-mesoscale processes and dynamics. In Ocean Modeling in an Eddying Regime (ed. Hecht, M. W. & Hasumi, H.), Geophysical Monograph Series, vol. 177, pp. 1738. American Geophysical Union.Google Scholar
Thompson, A. F. 2010 Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr. 40, 257278.Google Scholar
Thompson, A. F. & Sallée, J.-B. 2012 Jets and topography: jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 42, 956972.Google Scholar
Treguier, A. M. & McWilliams, J. C. 1990 Topographic influences on wind-driven, stratified flow in a 𝛽-plane channel: an idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 20, 321343.Google Scholar
Treguier, A. M. & Panetta, R. L. 1994 Multiple zonal jets in a quasi-geostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 24, 22632277.Google Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. p. 745. Cambridge University Press.Google Scholar
Vallis, G. K. & Maltrud, M. E. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 13461362.Google Scholar
Vanneste, J. 2000 Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech. 407, 105122.Google Scholar
Vanneste, J. 2003 Nonlinear dynamics over rough topography: homogeneous and stratified quasi-geostrophic theory. J. Fluid Mech. 474, 299318.Google Scholar
Whitt, D. B. & Taylor, J. R. 2017 Energetic submesoscales maintain strong mixed layer stratification during an autumn storm. J. Phys. Oceanogr. 47, 24192427.Google Scholar
Wirth, A., Gama, S. & Frisch, U. 1995 Eddy viscosity of three-dimensional flow. J. Fluid Mech. 288, 249264.Google Scholar