Hostname: page-component-5cf477f64f-r2nwp Total loading time: 0 Render date: 2025-04-08T07:32:52.770Z Has data issue: false hasContentIssue false

Chemically active particles in extensional flow

Published online by Cambridge University Press:  03 April 2025

Rahul Roy
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
Shubhadeep Mandal*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
*
Corresponding author: Shubhadeep Mandal, [email protected]

Abstract

In a quiescent medium, chemically active particles propel themselves by emitting or absorbing solutes, creating concentration gradients that induce a slip at the particle surface. This self-propulsion occurs when solute advection overcomes diffusion. However, an imposed flow field can alter these dynamics. This study explores the propulsion characteristics and the related rheological consequences of chemically active particles in an imposed uniaxial extensional flow analytically and numerically. An asymptotic solution is obtained for weak imposed flow relative to self-induced diffusiophoretic slip. Meanwhile, finite element simulations are carried out over a wide range of imposed flow strength and Péclet number. The results reveal that the interplay between solute advection, imposed flow and diffusiophoretic slip significantly affects particle propulsion and suspension rheology. While solute advection and diffusiophoretic slip tend to create asymmetric solute distributions, promoting self-propulsion, imposed extensional flow promotes symmetric distributions, hindering self-propulsion. This not only delays the start of self-propulsion but also results in an early transition from a propulsion state to a stationary state characterised by an abrupt halt at relatively lower Péclet number compared to a quiescent medium. Post the abrupt halt, a stirring effect induced by particle activity and imposed extensional flow results in an increased magnitude of stresslet, thus a sudden change in the effective viscosity of the active suspension. The effect of imposed extensional flow on active particle dynamics and suspension rheology can be described succinctly by categorising the overall dynamics into three separate regimes, determined by the Péclet number and the intensity of the extensional flow.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (3), 545570.CrossRefGoogle Scholar
Brosseau, Q., Usabiaga, F.B., Lushi, E., Wu, Y., Ristroph, L., Zhang, J., Ward, M. & Shelley, M.J. 2019 Relating rheotaxis and hydrodynamic actuation using asymmetric gold–platinum phoretic rods. Phys. Rev. Lett. 123 (17), 178004.CrossRefGoogle ScholarPubMed
Chen, X., Zhou, C. & Wang, W. 2019 Colloidal motors 101: a beginner’s guide to colloidal motor research. Chem. Asian J. 14 (14), 23882405.CrossRefGoogle ScholarPubMed
Chen, Y., Chong, K.L., Liu, H., Verzicco, R. & Lohse, D. 2024 Buoyancy-driven attraction of active droplets. J. Fluid Mech. 980, A54.CrossRefGoogle ScholarPubMed
Chen, Y., Chong, K.L., Liu, L., Verzicco, R. & Lohse, D. 2021 Instabilities driven by diffusiophoretic flow on catalytic surfaces. J. Fluid Mech. 919, A10.Google Scholar
Desai, N. & Michelin, S. 2021 Instability and self-propulsion of active droplets along a wall. Phys. Rev. Fluids 6 (11), 114103.CrossRefGoogle Scholar
Ebbens, S.J. & Howse, J.R. 2010 In pursuit of propulsion at the nanoscale. Soft Matter 6 (4), 726738.CrossRefGoogle Scholar
Farutin, A., Rizvi, S.M., Hu, W.-F., Lin, T.-S., Rafai, S. & Misbah, C. 2023 Motility and swimming: universal description and generic trajectories. Eur. Phys. J. E 46 (12), 120.CrossRefGoogle ScholarPubMed
Frankel, A.E. & Khair, A.S. 2014 Dynamics of a self-diffusiophoretic particle in shear flow. Phys. Rev. E 90 (1), 013030.CrossRefGoogle ScholarPubMed
Golestanian, R., Liverpool, T.B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9 (5), 126.Google Scholar
Hokmabad, B.V., Dey, R., Jalaal, M., Mohanty, D., Almukambetova, M., Baldwin, K.A., Lohse, D. & Maass, C.C. 2021 Emergence of bimodal motility in active droplets. Phys. Rev. X 11 (1), 011043.Google Scholar
Howse, J.R., Jones, R.A.L., Ryan, A.J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Hu, W.-F., Lin, T.-S., Rafai, S. & Misbah, C. 2019 Chaotic swimming of phoretic particles. Phys. Rev. Lett. 123 (23), 238004.Google ScholarPubMed
Hu, W.-F., Lin, T.-S., Rafai, S. & Misbah, C. 2022 Spontaneous locomotion of phoretic particles in three dimensions. Phys. Rev. Fluids 7 (3), 034003.CrossRefGoogle Scholar
Illien, P., Golestanian, R. & Sen, A. 2017 ‘Fuelled’ motion: phoretic motility and collective behaviour of active colloids. Chem. Soc. Rev. 46 (18), 55085518.CrossRefGoogle ScholarPubMed
Izri, Z., van der Linden, M.N., Michelin, S. & Dauchot, O. 2014 Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. Phys. Rev. Lett. 113 (24), 248302.CrossRefGoogle ScholarPubMed
Kailasham, R. & Khair, A.S. 2022 Dynamics of forced and unforced autophoretic particles. J. Fluid Mech. 948, A41.Google Scholar
Kailasham, R. & Khair, A.S. 2023 a Effect of speed fluctuations on the collective dynamics of active disks. Soft Matter 19 (40), 77647774.CrossRefGoogle ScholarPubMed
Kailasham, R. & Khair, A.S. 2023 b Non-Brownian diffusion and chaotic rheology of autophoretic disks. Phys. Rev. E 107 (4), 044609.CrossRefGoogle ScholarPubMed
Katuri, J., Uspal, W.E., Simmchen, J., Miguel-López, A. & Sánchez, S. 2018 Cross-stream migration of active particles. Sci. Adv. 4 (1), eaao1755.CrossRefGoogle ScholarPubMed
Koch, D.L. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43 (1), 637659.CrossRefGoogle Scholar
Lauga, E. & Michelin, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117 (14), 148001.CrossRefGoogle ScholarPubMed
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge Series in Chemical Engineering, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Li, G. 2022 Swimming dynamics of a self-propelled droplet. J. Fluid Mech. 934, A20.Google Scholar
Lin, C.-J., Peery, J.H. & Schowalter, W.R. 1970 Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech. 44 (1), 117.CrossRefGoogle Scholar
Maass, C.C., Krüger, C., Herminghaus, S. & Bahr, C. 2016 Swimming droplets. Annu. Rev. Condens. Matter Phys. 7 (1), 171193.CrossRefGoogle Scholar
Mandal, S., Sinha, S., Bandopadhyay, A. & Chakraborty, S. 2018 Drop deformation and emulsion rheology under the combined influence of uniform electric field and linear flow. J. Fluid Mech. 841, 408433.CrossRefGoogle Scholar
McDonnell, A.G., Gopesh, T.C., Lo, J., O’Bryan, M., Yeo, L.Y., Friend, J.R. & Prabhakar, R. 2015 Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows. Soft Matter 11 (23), 46584668.Google ScholarPubMed
Michelin, S. 2023 Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55 (1), 77101.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25 (6), 061701.CrossRefGoogle Scholar
Moran, J.L. & Posner, J.D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49 (1), 511540.CrossRefGoogle Scholar
Morozov, M. & Michelin, S. 2019 a Nonlinear dynamics of a chemically-active drop: from steady to chaotic self-propulsion. J. Chem. Phys. 150 (4), 044110.CrossRefGoogle ScholarPubMed
Morozov, M. & Michelin, S. 2019 b Self-propulsion near the onset of Marangoni instability of deformable active droplets. J. Fluid Mech. 860, 711738.CrossRefGoogle Scholar
Peng, G.G. & Schnitzer, O. 2023 Weakly nonlinear dynamics of a chemically active particle near the threshold for spontaneous motion. II. History-dependent motion. Phys. Rev. Fluids 8 (3), 033602.CrossRefGoogle Scholar
Picella, F. & Michelin, S. 2022 Confined self-propulsion of an isotropic active colloid. J. Fluid Mech. 933, A27.CrossRefGoogle Scholar
Popescu, M.N. 2020 Chemically active particles: from one to few on the way to many. Langmuir 36 (25), 68616870.CrossRefGoogle ScholarPubMed
Raja, R.V., Subramanian, G. & Koch, D.L. 2010 Inertial effects on the rheology of a dilute emulsion. J. Fluid Mech. 646, 255296.CrossRefGoogle Scholar
Ramaswamy, S. 2010 The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1 (1), 323345.Google Scholar
Saha, S. & Yariv, E. 2022 Phoretic self-propulsion of a slightly inhomogeneous disc. J. Fluid Mech. 940, A24.CrossRefGoogle Scholar
Saha, S., Yariv, E. & Schnitzer, O. 2021 Isotropically active colloids under uniform force fields: from forced to spontaneous motion. J. Fluid Mech. 916, A47.CrossRefGoogle Scholar
Saintillan, D. 2010 The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50 (9), 12751281.Google Scholar
Saintillan, D. 2018 Rheology of active fluids. Annu. Rev. Fluid Mech. 50 (1), 563592.CrossRefGoogle Scholar
Schnitzer, O. 2023 Weakly nonlinear dynamics of a chemically active particle near the threshold for spontaneous motion. I. Adjoint method. Phys. Rev. Fluids 8 (3), 034201.Google Scholar
Seemann, R., Fleury, J.-B. & Maass, C.C. 2016 Self-propelled droplets. Eur. Phys. J. Special Topics 225 (11–12), 22272240.CrossRefGoogle Scholar
Sharan, P., Xiao, Z., Mancuso, V., Uspal, W.E. & Simmchen, J. 2022 Upstream rheotaxis of catalytic Janus spheres. ACS Nano 16 (3), 45994608.CrossRefGoogle ScholarPubMed
Shreekrishna, S., Mandal, S. & Das, S. 2024 Spontaneous emergence of motion of an isotropic active particle in a Carreau fluid. Soft Matter 20 (48), 96839693.CrossRefGoogle Scholar
Si, B.R., Patel, P. & Mangal, R. 2020 Self-propelled Janus colloids in shear flow. Langmuir 36 (40), 1188811898.Google ScholarPubMed
Stark, H. 2016 Swimming in external fields. Eur. Phys. J. Special Topics 225 (11–12), 23692387.CrossRefGoogle Scholar
Subramanian, G., Koch, D.L., Zhang, J. & Yang, C. 2011 The influence of the inertially dominated outer region on the rheology of a dilute dispersion of low-Reynolds-number drops or rigid particles. J. Fluid Mech. 674, 307358.CrossRefGoogle Scholar
Taylor, G.I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138 (834), 4148.Google Scholar
Ten Hagen, B., Kümmel, F., Wittkowski, R., Takagi, D., Löwen, H. & Bechinger, C. 2014 Gravitaxis of asymmetric self-propelled colloidal particles. Nat. Commun. 5 (1), 4829.CrossRefGoogle ScholarPubMed
Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2015 Rheotaxis of spherical active particles near a planar wall. Soft Matter 11 (33), 66136632.CrossRefGoogle Scholar
Wang, J. 2013 Nanomachines: Fundamentals and Applications. John Wiley & Sons.CrossRefGoogle Scholar
Wang, Y., Zheng, L. & Li, G. 2024 Self-propulsion of a droplet induced by combined diffusiophoresis and marangoni effects. Electrophoresis. https://doi.org/10.1002/elps.202400005.CrossRefGoogle Scholar
Wirtz, D. 2009 Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38 (1), 301326.CrossRefGoogle Scholar
Yang, Q., Jiang, M., Picano, F. & Zhu, L. 2024 Shaping active matter from crystalline solids to active turbulence. Nat. Commun. 15 (1), 2874.CrossRefGoogle ScholarPubMed
Yariv, E. & Kaynan, U. 2017 Phoretic drag reduction of chemically active homogeneous spheres under force fields and shear flows. Phys. Rev. Fluids 2 (1), 012201.CrossRefGoogle Scholar
Zhao, G. & Pumera, M. 2012 Macroscopic self-propelled objects. Chem. Asian J. 7 (9), 19942002.CrossRefGoogle ScholarPubMed
Zhu, G. & Zhu, L. 2023 Self-propulsion of an elliptical phoretic disk emitting solute uniformly. J. Fluid Mech. 974, A57.CrossRefGoogle Scholar
Zöttl, A. & Stark, H. 2016 Emergent behavior in active colloids. J. Phys.: Condens. Matter 28 (25), 253001.Google Scholar