Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T01:23:09.600Z Has data issue: false hasContentIssue false

Regularized 13-moment equations for inverse power law models

Published online by Cambridge University Press:  06 May 2020

Zhenning Cai
Affiliation:
Department of Mathematics, National University of Singapore, Level 4, Block S17, 10 Lower Kent Ridge Road, Singapore119076
Yanli Wang*
Affiliation:
Beijing Computational Science Research Center, Beijing, China, 100193
*
Email address for correspondence: [email protected]

Abstract

We propose a systematic methodology to derive the regularized 13-moment equations in the rarefied gas dynamics for a general class of linearized collision models. Detailed expressions of the moment equations are written down for all inverse power law models as well as the hard-sphere model. By linear analysis, we show that the equations are stable near the equilibrium. The models are tested for shock structure problems to show their capability to capture the correct flow structure in strong non-equilibrium.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arfken, G. B., Weber, H. J. & Harris, F. E. 2013 Mathematical Methods for Physicists, 7th edn. Academic Press.Google Scholar
Bayin, S. 2018 Mathematical Methods in Science and Engineering, 2nd edn. Wiley.CrossRefGoogle Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.Google Scholar
Bobylev, A. V. 1982 The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 2931.Google Scholar
Bobylev, A. V. 2006 Instabilities in the Chapman–Enskog expansion and hyperbolic Burnett equations. J. Stat. Phys. 124 (2–4), 371399.CrossRefGoogle Scholar
Bobylev, A. V. 2008 Generalized Burnett hydrodynamics. J. Stat. Phys. 132, 569580.CrossRefGoogle Scholar
Burnett, D. 1936 The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40 (1), 382435.CrossRefGoogle Scholar
Cai, Z., Fan, Y. & Li, R. 2014 On hyperbolicity of 13-moment system. Kin. Rel. Models 7 (3), 415432.CrossRefGoogle Scholar
Cai, Z., Fan, Y. & Li, R. 2015 A framework on moment model reduction for kinetic equation. SIAM J. Appl. Maths 75 (5), 20012023.CrossRefGoogle Scholar
Cai, Z., Li, R. & Wang, Y. 2012 Numerical regularized moment method for high Mach number flow. Commun. Comput. Phys. 11 (5), 14151438.CrossRefGoogle Scholar
Cai, Z. & Torrilhon, M. 2015 Approximation of the linearized Boltzmann collision operator for hard-sphere and inverse-power-law models. J. Comput. Phys. 295, 617643.CrossRefGoogle Scholar
Cai, Z. & Torrilhon, M. 2018 Numerical simulation of microflows using moment methods with linearized collision operator. J. Sci. Comput. 74 (1), 336374.CrossRefGoogle Scholar
Chapman, S. 1916 On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas. Phil. Trans. R. Soc. Lond. A 216 (538–548), 279348.Google Scholar
Chapman, S. & Cowling, T. G. 1990 The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press.Google Scholar
Dimarco, G., Loubére, R., Narski, J. & Rey, T. 2018 An efficient numerical method for solving the Boltzmann equation in multidimensions. J. Comput. Phys. 353, 4681.CrossRefGoogle Scholar
Dreyer, W. 1987 Maximisation of the entropy in non-equilibrium. J. Phys. A: Math. Gen. 20 (18), 65056517.CrossRefGoogle Scholar
Enskog, D. 1921 The numerical calculation of phenomena in fairly dense gases. Arkiv Mat. Astron. Fys. 16 (1), 160.Google Scholar
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2 (4), 331407.CrossRefGoogle Scholar
Grad, H. 1958 Principles of the kinetic theory of gases. Handbuch der Physik 12, 205294.Google Scholar
Gupta, V. K. & Torrilhon, M. 2012 Automated Boltzmann collision integrals for moment equations. AIP Conf. Proc. 1501 (1), 6774.Google Scholar
Harris, S. 1971 An Introduction to the Theory of the Boltzmann Equation. Dover Publications.Google Scholar
Hu, Z. & Cai, Z.2019 Burnett spectral method for high-speed rarefied gas flows. arXiv preprint arXiv:1910.09355.Google Scholar
Jin, S. & Slemrod, M. 2001 Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103 (5–6), 10091033.CrossRefGoogle Scholar
Kumar, K. 1966a Polynomial expansions in kinetic theory of gases. Ann. Phys. 37 (1), 113141.CrossRefGoogle Scholar
Kumar, K. 1966b Polynomial expansions in kinetic theory of gases. Ann. Phys. 37, 113141.CrossRefGoogle Scholar
Levermore, C. D. 1996 Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (5–6), 10211065.CrossRefGoogle Scholar
McDonald, J. & Torrilhon, M. 2013 Affordable robust moment closures for CFD based on the maximum-entropy hierarchy. J. Comput. Phys. 251, 500523.CrossRefGoogle Scholar
Meyer, E. & Sessler, G. 1957 Schallausbreitung in Gasen bei hohen Frequenzen und sehr niedrigen Drucken. Z. Phys. 149 (1), 1539.Google Scholar
Mouhot, C. & Strain, R. M. 2007 Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. 87 (5), 515535.CrossRefGoogle Scholar
Müller, I. & Ruggeri, T. 1998 Rational Extended Thermodynamics, 2nd edn. Springer Tracts in Natural Philosophy, vol. 37. Springer.CrossRefGoogle Scholar
Myong, R. S. 1999 Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Phys. Fluids 11 (9), 27882802.CrossRefGoogle Scholar
Reinecke, S. & Kremer, G. M. 1990 Method of moments of Grad. Phys. Rev. A 42 (2), 815820.CrossRefGoogle ScholarPubMed
Shavaliyev, M. S. 1993 Super-Burnett corrections to the stress tensor and the heat flux in a gax of Maxwellian molecules. Z. Angew. Math. Mech. J. Appl. Math. Mech. 57 (3), 573576.CrossRefGoogle Scholar
Struchtrup, H. 2005a Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3 (1), 221243.CrossRefGoogle Scholar
Struchtrup, H. 2005b Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Springer.CrossRefGoogle Scholar
Struchtrup, H. & Torrilhon, M. 2003 Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15 (9), 26682680.CrossRefGoogle Scholar
Struchtrup, H. & Torrilhon, M. 2007 H-theorem, regularization, and boundary conditions for linearized 13 moment equations. Phys. Rev. Lett. 99, 014502.CrossRefGoogle ScholarPubMed
Struchtrup, H. & Torrilhon, M. 2013 Regularized 13 moment equations for hard sphere molecules: Linear bulk equations. Phys. Fluids 25, 052001.CrossRefGoogle Scholar
Tallec, P. L. & Perlat, J. P.1997 Numerical analysis of Levermore’s moment system, Rapport de recherche 3124, INRIA Rocquencourt.Google Scholar
Timokhin, M. Y., Struchtrup, H., Kokhanchik, A. A. & Bondar, Y. A. 2017 Different variants of R13 moment equations applied to the shock-wave structure. Phys. Fluids 29, 037105.Google Scholar
Torrens, I. M. 1972 Interatomic Potentials. Academic Press.CrossRefGoogle Scholar
Torrilhon, M. 2006 Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM Multiscale Model. Simul. 5 (3), 695728.CrossRefGoogle Scholar
Torrilhon, M. 2012 H-theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kin. Rel. Models 5 (1), 185201.CrossRefGoogle Scholar
Torrilhon, M. & Struchtrup, H. 2004 Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171198.CrossRefGoogle Scholar
Torrilhon, M. & Struchtrup, H. 2008 Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227 (3), 19822011.CrossRefGoogle Scholar
Valentini, P. & Schwartzentruber, T. E. 2009 Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys. Fluids 21 (6), 066101.CrossRefGoogle Scholar
Vincenti, W., Kruger, C. & Teichmann, T. 1966 Introduction to physical gas dynamics. Phys. Today 19 (10), 9595.CrossRefGoogle Scholar
Supplementary material: File

Cai and Wang et al. supplementary material

Cai and Wang et al. supplementary material

Download Cai and Wang et al. supplementary material(File)
File 26.6 KB