Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T05:18:36.172Z Has data issue: false hasContentIssue false

Plume or bubble? Mixed-convection flow regimes and city-scale circulations

Published online by Cambridge University Press:  09 June 2020

Hamidreza Omidvar
Affiliation:
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
Elie Bou-Zeid*
Affiliation:
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
Qi Li
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
Juan-Pedro Mellado
Affiliation:
Department of Physics, Division of Aerospace Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
Petra Klein
Affiliation:
School of Meteorology, University of Oklahoma, Norman, OK 73019, USA
*
Email address for correspondence: [email protected]

Abstract

Large-scale circulations around a city are co-modulated by the urban heat island and by regional wind patterns. Depending on these variables, the circulations fall into different regimes ranging from advection-dominated (plume regime) to convection-driven (bubble regime). Using dimensional analysis and large-eddy simulations, this study investigates how these different circulations scale with urban and rural heat fluxes, as well as upstream wind speed. Two dimensionless parameters are shown to control the dynamics of the flow: (1) the ratio of rural to urban thermal convective velocities that contrasts their respective buoyancy fluxes and (2) the ratio of bulk inflow velocity to the convection velocity in the rural area. Finally, the vertical flow velocities transecting the rural to urban transitions are used to develop a criterion for categorizing different large-scale circulations into plume, bubble or transitional regimes. The findings have implications for city ventilation since bubble regimes are expected to trap pollutants, as well as for scaling analysis in canonical mixed-convection flows.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Modern Phys. 81 (2), 503537.CrossRefGoogle Scholar
Bejan, A. 1993 Heat Transfer. John Wiley & Sons.Google Scholar
Bergman, T. L., Incropera, F. P., DeWitt, D. P. & Lavine, A. S. 2011 Fundamentals of Heat and Mass transfer. John Wiley & Sons.Google Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 118.CrossRefGoogle Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. B. 2004 Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour. Res. 40 (2), W02505.Google Scholar
Bou-Zeid, E., Overney, J., Rogers, B. D. & Parlange, M. B. 2009 The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Boundary-Layer Meteorol. 132 (3), 415436.CrossRefGoogle Scholar
Bou-Zeid, E., Parlange, M. B. & Meneveau, C. 2007 On the parameterization of surface roughness at regional scales. J. Atmos. Sci. 64 (1), 216227.CrossRefGoogle Scholar
Changnon, S. A. 1979 Rainfall changes in summer caused by St. Louis. Science 205 (4404), 402404.CrossRefGoogle ScholarPubMed
Deardorff, J. W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27 (8), 12111213.2.0.CO;2>CrossRefGoogle Scholar
De Foy, B., Varela, J. R., Molina, L. T. & Molina, M. J. 2006 Rapid ventilation of the Mexico City basin and regional fate of the urban plume. Atmos. Chem. Phys. 6 (8), 23212335.CrossRefGoogle Scholar
Delage, Y. & Taylor, P. A. 1970 Numerical studies of heat island circulations. Boundary-Layer Meteorol. 1 (2), 201226.CrossRefGoogle Scholar
Fan, Y., Li, Y., Bejan, A., Wang, Y. & Yang, X. 2017 Horizontal extent of the urban heat dome flow. Sci. Rep. 7 (1), 110.Google ScholarPubMed
Fan, Y., Li, Y., Wang, X. & Catalano, F. 2016 A new convective velocity scale for studying diurnal urban heat island circulation. J. Appl. Meteorol. Clim. 55 (10), 21512164.CrossRefGoogle Scholar
Fan, Y., Li, Y. & Yin, S. 2018 Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city. Intl J. Heat Mass Transfer 124, 233246.CrossRefGoogle Scholar
Hadfield, M. G., Cotton, W. R. & Pielke, R. A. 1991 Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: a small-scale circulation with zero wind. Boundary-Layer Meteorol. 57 (1–2), 79114.CrossRefGoogle Scholar
Hataya, N., Mochida, A., Iwata, T., Tabata, Y., Yoshino, H. & Tominaga, Y. 2006 Development of the simulation method for thermal environment and pollutant diffusion in street canyons with subgrid scale obstacles. In Proceedings of the Fourth International Symposium on Computational Wind Engineering (CWE2006), Yokohama, Japan, pp. 553556.Google Scholar
Huang, J. & Bou-Zeid, E. 2013 Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J. Atmos. Sci. 70 (6), 15131527.CrossRefGoogle Scholar
Kimura, R. 1976 Effects of general flows on a heat island convection. J. Met. Soc. Japan Ser. II 54 (5), 308320.CrossRefGoogle Scholar
Klein, P. M. 2012 Metropolitan effects on atmospheric patterns: important scales. In Metropolitan Sustainability, pp. 173204. Elsevier.CrossRefGoogle Scholar
Klemp, J. B. & Lilly, D. K. 1978 Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 35 (1), 78107.2.0.CO;2>CrossRefGoogle Scholar
Kurbatskii, A. F. & Kurbatskaya, L. I. 2016 Turbulent circulation above the surface heat source in stably stratified atmosphere. AIP Conf. Proc. 1770, 030034.Google Scholar
Li, D. 2016 Revisiting the subgrid-scale Prandtl number for large-eddy simulation. J. Fluid Mech. 802, R2.CrossRefGoogle Scholar
Li, Q. & Bou-Zeid, E. 2019 Contrasts between momentum and scalar transport over very rough surfaces. J. Fluid Mech. 880, 3258.CrossRefGoogle Scholar
Li, Q., Bou-Zeid, E. & Anderson, W. 2016a The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport. J. Comput. Phys. 310, 237251.CrossRefGoogle Scholar
Li, Q., Bou-Zeid, E., Anderson, W., Grimmond, S. & Hultmark, M. 2016b Quality and reliability of LES of convective scalar transfer at high Reynolds numbers. Intl J. Heat Mass Transfer 102, 959970.CrossRefGoogle Scholar
Llaguno-Munitxa, M. & Bou-Zeid, E. 2018 Shaping buildings to promote street ventilation: a large-eddy simulation study. Urban Climate 26, 7694.CrossRefGoogle Scholar
Lloyd, S. P. 1982 Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (2), 129137.CrossRefGoogle Scholar
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140 (2), 233258.CrossRefGoogle Scholar
MathWorks2019. MATLAB kmeans function. Retrieved January 25, 2020, from https://mathworks.com/help/stats/kmeans.html.Google Scholar
Mochida, A., Tabata, Y., Iwata, T. & Yoshino, H. 2008 Examining tree canopy models for CFD prediction of wind environment at pedestrian level. J. Wind Engng Ind. Aerodyn. 96 (10–11), 16671677.CrossRefGoogle Scholar
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 24 (151), 163187.Google Scholar
National Center for Atmospheric Research2019 Computational and Information Systems Laboratory. Cheyenne: HPE/SGI ICE XA System, University Community Computing, Boulder, CO; doi:10.5065/D6RX99HX.CrossRefGoogle Scholar
Niino, H., Mori, A., Satomura, T. & Akiba, S. 2006 Flow regimes of nonlinear heat island circulation. J. Atmos. Sci. 63 (5), 15381547.CrossRefGoogle Scholar
Oke, T. R. 1982 The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108 (455), 124.Google Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11 (2002), 479517.CrossRefGoogle Scholar
Petukhov, B. S. & Polyakov, A. F. 1988 Heat Transfer in Turbulent Mixed Convection, 1st Edn, p. 216. Hemisphere.Google Scholar
Ryu, Y. H., Baik, J. J. & Han, J. Y. 2013 Daytime urban breeze circulation and its interaction with convective cells. Q. J. R. Meteorol. Soc. 139 (671), 401413.CrossRefGoogle Scholar
Sawai, T. 1978 Formation of the urban air mass and the associated local circulation. J Met. Soc. Japan Ser. II 56 (3), 159174.CrossRefGoogle Scholar
Shah, S. & Bou-Zeid, E. 2014 Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Boundary-Layer Meteorol. 153 (3), 355387.CrossRefGoogle Scholar
Shariat, M., Akbarinia, A., Nezhad, A. H. & Laur, R. 2011 Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts. Appl. Therm. Engng 31 (14-15), 2348.CrossRefGoogle Scholar
Shepherd, J. M. 2005 A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions 9 (12), 127.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re 𝜃 = 1410. J. Fluid Mech. 187 (December 1986), 6198.CrossRefGoogle Scholar
Tseng, Y.-H., Meneveau, C. & Parlange, M. B. 2006 Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ. Sci. Technol. 40 (8), 26532662.CrossRefGoogle ScholarPubMed
Venko, S., Vidal De Ventós, D., Arkar, C. & Medved, S. 2014 An experimental study of natural and mixed convection over cooled vertical room wall. Energy Build. 68 (PARTA), 387395.CrossRefGoogle Scholar