Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:38:05.756Z Has data issue: false hasContentIssue false

Obese mothers supplemented with melatonin during gestation and lactation ameliorate the male offspring’s pancreatic islet cellular composition and beta-cell function

Published online by Cambridge University Press:  27 June 2023

Brenda A. Nagagata
Affiliation:
Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
Matheus Ajackson
Affiliation:
Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
Fernanda Ornellas
Affiliation:
Faculty of Nutrition, A Motta University, Rio de Janeiro, Brazil
Carlos A. Mandarim-de-Lacerda
Affiliation:
Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
Marcia Barbosa Aguila*
Affiliation:
Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
*
Corresponding author: Marcia Barbosa Aguila; Emails: [email protected], [email protected]

Abstract

Melatonin supplementation to obese mothers during gestation and lactation might benefit the pancreatic islet cellular composition and beta-cell function in male offspring adulthood. C57BL/6 females (mothers) were assigned to two groups (n = 20/each) based on their consumption in control (C 17% kJ as fat) or high-fat diet (HF 49% kJ as fat). Mothers were supplemented with melatonin (Mel) (10 mg/kg daily) during gestation and lactation, or vehicle, forming the groups (n = 10/each): C, CMel, HF, and HFMel. The male offspring were studied, considering they only received the C diet after weaning until three months old. The HF mothers and their offspring showed higher body weight, glucose intolerance, insulin resistance, and low insulin sensitivity than the C ones. However, HFMel mothers and their offspring showed improved glucose metabolism and weight loss than the HF ones. Also, the offspring’s higher expressions of pro-inflammatory markers and endoplasmic reticulum (ER) stress were observed in HF but reduced in HFMel. Contrarily, antioxidant enzymes were less expressed in HF but improved in HFMel. In addition, HF showed increased beta-cell mass and hyperinsulinemia but diminished in HFMel. Besides, the beta-cell maturity and identity gene expressions diminished in HF but enhanced in HFMel. In conclusion, obese mothers supplemented with melatonin benefit their offspring’s islet cell remodeling and function. In addition, improving pro-inflammatory markers, oxidative stress, and ER stress resulted in better glucose and insulin levels control. Consequently, pancreatic islets and functioning beta cells were preserved in the offspring of obese mothers supplemented with melatonin.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afshin, A, Forouzanfar, MH, Reitsma, MB, et al. Health effects of overweight and obesity in 195 Countries over 25 years. N Engl J Med. 2017; 377(1), 1327. DOI: 10.1056/NEJMoa1614362.Google ScholarPubMed
Chu, SY, Callaghan, WM, Kim, SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007; 30(8), 20702076. DOI: 10.2337/dc06-2559a.CrossRefGoogle ScholarPubMed
Barker, DJ. Developmental origins of adult health and disease. J Epidemiol Commun Health. 2004; 58(2), 114115. DOI: 10.1136/jech.58.2.114.CrossRefGoogle ScholarPubMed
Ong, TP, Ozanne, SE. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Curr Opin Clin Nutr Metab Care. 2015; 18(4), 354360. DOI: 10.1097/MCO.0000000000000177.CrossRefGoogle ScholarPubMed
Nicholas, LM, Morrison, JL, Rattanatray, L, Zhang, S, Ozanne, SE, McMillen, IC. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes (Lond). 2016; 40(2), 229238. DOI: 10.1038/ijo.2015.178.CrossRefGoogle ScholarPubMed
Gniuli, D, Calcagno, A, Caristo, ME, et al. Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J Lipid Res. 2008; 49(9), 19361945. DOI: 10.1194/jlr.M800033-JLR200.CrossRefGoogle ScholarPubMed
Bringhenti, I, Moraes-Teixeira, JA, Cunha, MR, Ornellas, F, Mandarim-de-Lacerda, CA, Aguila, MB. Maternal obesity during the preconception and early life periods alters pancreatic development in early and adult life in male mouse offspring. PLoS One. 2013; 8(1), e55711. DOI: 10.1371/journal.pone.0055711.CrossRefGoogle ScholarPubMed
Karamitri, A, Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol. 2019; 15(2), 105125. DOI: 10.1038/s41574-018-0130-1.CrossRefGoogle ScholarPubMed
Voiculescu, SE, Zygouropoulos, N, Zahiu, CD, Zagrean, AM. Role of melatonin in embryo fetal development. J Med Life. 2014; 7(4), 488492.Google ScholarPubMed
Tain, YL, Huang, LT, Chan, JY. Transcriptional regulation of programmed hypertension by melatonin: an epigenetic perspective. Int J Mol Sci. 2014; 15(10), 1848418495. DOI: 10.3390/ijms151018484.CrossRefGoogle ScholarPubMed
Andersen, LPH, Gögenur, I, Rosenberg, J, Reiter, RJ. The safety of melatonin in humans. Clin Drug Invest. 2016; 36(3), 169175. DOI: 10.1007/s40261-015-0368-5.CrossRefGoogle ScholarPubMed
Tain, YL, Huang, LT, Hsu, CN. Developmental programming of adult disease: reprogramming by melatonin? Int J Mol Sci. 2017; 18(2), 426. DOI: 10.3390/ijms18020426.CrossRefGoogle ScholarPubMed
Feng, X, Zhang, Y, Li, N, et al. Melatonin in reproductive medicine: a promising therapeutic target? Curr Med Chem. 2022; 30, 3090. DOI: 10.2174/0929867329666221005101031.Google Scholar
Xu, D, Liu, L, Zhao, Y, et al. Melatonin protects mouse testes from palmitic acid-induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner. J Pineal Res. 2020; 69(4), e12690. DOI: 10.1111/jpi.12690.CrossRefGoogle Scholar
Tan, DX, Manchester, LC, Qin, L, Reiter, RJ. Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. 2016; 17(12), 2124. DOI: 10.3390/ijms17122124.CrossRefGoogle ScholarPubMed
Tamura, H, Nakamura, Y, Korkmaz, A, et al. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2009; 92(1), 328343. DOI: 10.1016/j.fertnstert.2008.05.016.CrossRefGoogle ScholarPubMed
Berbets, AM, Davydenko, IS, Barbe, AM, Konkov, DH, Albota, OM, Yuzko, OM. Melatonin 1A and 1B receptors’ expression decreases in the placenta of women with fetal growth restriction. Reprod Sci. 2021; 28(1), 197206. DOI: 10.1007/s43032-020-00285-5.CrossRefGoogle ScholarPubMed
Zhou, C, Ding, Y, Yu, L, Nie, Y, Yang, M. Melatonin regulates proliferation, apoptosis and invasion of trophoblasts in preeclampsia by inhibiting endoplasmic reticulum stress. Am J Reprod Immunol. 2022; 88(2), e13585. DOI: 10.1111/aji.13585.CrossRefGoogle ScholarPubMed
Ajackson, M, Nagagata, BA, Marcondes-de-Castro, IA, Mandarim-de-Lacerda, CA, Aguila, MB. Adult mice offspring of obese mothers supplemented with melatonin show lessened liver steatosis, inflammation, oxidative stress, and endoplasmic reticulum stress. Life Sci. 2023; 312, 121253. DOI: 10.1016/j.lfs.2022.121253.CrossRefGoogle ScholarPubMed
Fraulob, JC, Ogg-Diamantino, R, Santos, CF, Aguila, MB, Mandarim-de-Lacerda, CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr. 2010; 46(3), 212223. DOI: 10.3164/jcbn.09-83.CrossRefGoogle ScholarPubMed
Mandarim-de-Lacerda, CA, Del Sol, M, Vazquez, B, Aguila, MB. Mice as an animal model for the study of adipose tissue and obesity. Int J Morphol. 2021; 39(6), 15211528. DOI: 10.4067/S0717-95022021000601521.10.4067/S0717-95022021000601521CrossRefGoogle Scholar
du Sert, NPercie, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Exp Physiol. 2020; 105(9), 14591466. DOI: 10.1113/EP088870.CrossRefGoogle Scholar
Reeves, PG, Nielsen, FH, Fahey, GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123(11), 19391951. DOI: 10.1093/jn/123.11.1939.CrossRefGoogle Scholar
Aguila, MB, Ornellas, F, Mandarim-de-Lacerda, CA. Nutritional research and fetal programming: parental nutrition influences the structure and function of the organs. Int J Morphol. 2021; 39(1), 327334. DOI: 10.4067/s0717-95022021000100327.CrossRefGoogle Scholar
Baydas, G, Nedzvetsky, VS, Nerush, PA, Kirichenko, SV, Demchenko, HM, Reiter, RJ. A novel role for melatonin: regulation of the expression of cell adhesion molecules in the rat hippocampus and cortex. Neurosci Lett. 2002; 326(2), 109112. DOI: 10.1016/s0304-3940(02)00328-2.CrossRefGoogle ScholarPubMed
Wolterink-Donselaar, IG, Meerding, JM, Fernandes, C. A method for gender determination in newborn dark pigmented mice. Lab Anim (NY). 2009; 38(1), 3538. DOI: 10.1038/laban0109-35.CrossRefGoogle ScholarPubMed
Pang, J, Xi, C, Huang, X, Cui, J, Gong, H, Zhang, T. Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 mice. PLoS One. 2016; 11(1), e0146675. DOI: 10.1371/journal.pone.0146675.CrossRefGoogle ScholarPubMed
Katz, A, Nambi, SS, Mather, K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000; 85(7), 24022410. DOI: 10.1210/jcem.85.7.6661.CrossRefGoogle ScholarPubMed
Gundersen, HJG. Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc. 1977; 111, 219223. DOI: 10.1111/j.1365-2818.1977.tb00062.x.CrossRefGoogle Scholar
Mandarim-de-Lacerda, CA, Del-Sol, M. Tips for studies with quantitative morphology (morphometry and stereology). Int J Morphol. 2017; 35(4), 14821494. DOI: 10.4067/s0717-95022017000401482.CrossRefGoogle Scholar
Mandarim-de-Lacerda, CA. Stereological tools in biomedical research. An Acad Bras Cienc. 2003; 75(4), 469486. DOI: 10.1590/S0001-37652003000400006.CrossRefGoogle ScholarPubMed
Mandarim-de-Lacerda, CA, Santos, C, Aguila, MB. Image analysis and quantitative morphology. Methods Mol Biol. 2010; 611, 211225. DOI: 10.1007/978-1-60327-345-9_17.CrossRefGoogle ScholarPubMed
Marinho, TS, Aguila, MB, Mandarim-de-Lacerda, CA. Pancreatic islet stereology: estimation of beta cells mass. Int J Morphol. 2019; 37(4), 13311334. DOI: 10.4067/s0717-95022019000401331.CrossRefGoogle Scholar
Marinho, TS, Martins, FF, Cardoso, LEM, Aguila, MB, Mandarim-de-Lacerda, CA. Pancreatic islet cells disarray, apoptosis, and proliferation in obese mice. the role of Semaglutide treatment. Biochimie. 2022; 193, 126136. DOI: 10.1016/j.biochi.2021.10.017.CrossRefGoogle ScholarPubMed
Rao, X, Lai, D, Huang, X. A new method for quantitative real-time polymerase chain reaction data analysis. J Comput Biol. 2013; 20(9), 703711. DOI: 10.1089/cmb.2012.0279.CrossRefGoogle ScholarPubMed
Mandarim-de-Lacerda, CA. L’îlot pancréatique: ce que nous savons 150 ans après Langerhans. Bull l’Acad Natl Méd. 2019; 203(8-9), 670682. DOI: 10.1016/j.banm.2019.06.015.Google Scholar
Mandarim-de-Lacerda, CA. Pancreatic islet (of Langerhans) revisited. Histol Histopathol. 2019; 34(9), 985993. DOI: 10.14670/HH-18-118.Google ScholarPubMed
Ornellas, F, Karise, I, Aguila, MB, Mandarim-de-Lacerda, CA. Pancreatic islets of langerhans: adapting cell and molecular biology to changes of metabolism. In Obesity and Diabetes (eds. Faintuch, J, Faintuch, S), 2020; pp. 175190. Springer International Publishing, Cham. DOI: 10.1007/978-3-030-53370-0_13.CrossRefGoogle Scholar
Cerf, ME. Parental high-fat programming of offspring development, health and beta-cells. Islets. 2011; 3(3), 118120. DOI: 10.4161/isl.3.3.15420.CrossRefGoogle ScholarPubMed
Cerf, ME. High fat programming of beta cell compensation, exhaustion, death and dysfunction. Pediatr Diabetes. 2015; 16(2), 7178. DOI: 10.1111/pedi.12137.CrossRefGoogle ScholarPubMed
Sartori, C, Dessen, P, Mathieu, C, et al. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology. 2009; 150(12), 53115317. DOI: 10.1210/en.2009-0425.CrossRefGoogle ScholarPubMed
Ornellas, F, Mello, VS, Mandarim-de-Lacerda, CA, Aguila, MB. Sexual dimorphism in fat distribution and metabolic profile in mice offspring from diet-induced obese mothers. Life Sci. 2013; 93(12-14), 454463. DOI: 10.1016/j.lfs.2013.08.005.CrossRefGoogle ScholarPubMed
Palou, M, Priego, T, Sanchez, J, Palou, A, Pico, C. Sexual dimorphism in the lasting effects of moderate caloric restriction during gestation on energy homeostasis in rats is related with fetal programming of insulin and leptin resistance. Nutr Metab (Lond). 2010; 7, 69. DOI: 10.1186/1743-7075-7-69.CrossRefGoogle ScholarPubMed
Thompson, LP, Song, H, Polster, BM. Fetal programming and sexual dimorphism of mitochondrial protein expression and activity of hearts of prenatally hypoxic guinea pig offspring. Oxid Med Cell Longev. 2019; 2019; 2019, 7210249. DOI: 10.1155/2019/7210249.CrossRefGoogle ScholarPubMed
Kretschmer, T, Schulze-Edinghausen, M, Turnwald, EM, et al. Effect of maternal obesity in mice on IL-6 levels and placental endothelial cell homeostasis. Nutrients. 2020; 12(2), 296. DOI: 10.3390/nu12020296.CrossRefGoogle ScholarPubMed
Enstad, S, Cheema, S, Thomas, R, et al. The impact of maternal obesity and breast milk inflammation on developmental programming of infant growth. Eur J Clin Nutr. 2021; 75(1), 180188. DOI: 10.1038/s41430-020-00720-5.CrossRefGoogle ScholarPubMed
Igosheva, N, Abramov, AY, Poston, L, et al. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010; 5(4), e10074. DOI: 10.1371/journal.pone.0010074.CrossRefGoogle ScholarPubMed
Napso, T, Lean, SC, Lu, M, et al. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol (Oxf). 2022; 234(4), e13795. DOI: 10.1111/apha.13795.CrossRefGoogle ScholarPubMed
Park, S, Jang, A, Bouret, SG. Maternal obesity-induced endoplasmic reticulum stress causes metabolic alterations and abnormal hypothalamic development in the offspring. PLoS Biol. 2020; 18(3), e3000296. DOI: 10.1371/journal.pbio.3000296.CrossRefGoogle ScholarPubMed
Saat, N, Risvanli, A, Dogan, H, et al. Effect of melatonin on torsion and reperfusion induced pathogenesis of rat uterus. Biotech Histochem. 2019; 94(7), 533539. DOI: 10.1080/10520295.2019.1605456.CrossRefGoogle ScholarPubMed
Tamura, H, Takasaki, A, Miwa, I, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008; 44(3), 280287. DOI: 10.1111/j.1600-079X.2007.00524.x.CrossRefGoogle ScholarPubMed
Chuffa, LGA, Lupi, LA, Cucielo, MS, Silveira, HS, Reiter, RJ, Seiva, FRF. Melatonin promotes uterine and placental health: potential molecular mechanisms. Int J Mol Sci. 2019; 21(1), 300. DOI: 10.3390/ijms21010300.Google ScholarPubMed
Gomes, PRL, Motta-Teixeira, LC, Gallo, CC, et al. Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. Gen Comp Endocrinol. 2021; 300, 113633. DOI: 10.1016/j.ygcen.2020.113633.CrossRefGoogle ScholarPubMed
Xu, L, Li, D, Li, H, et al. Suppression of obesity by melatonin through increasing energy expenditure and accelerating lipolysis in mice fed a high-fat diet. Nutr Diabetes. 2022; 12(1), 42. DOI: 10.1038/s41387-022-00222-2.CrossRefGoogle ScholarPubMed
Zephy, D, Ahmad, J. Type 2 diabetes mellitus: role of melatonin and oxidative stress. Diabetes Metab Syndr. 2015; 9(2), 127131. DOI: 10.1016/j.dsx.2014.09.018.CrossRefGoogle ScholarPubMed
Mayo, JC, Sainz, RM, Antoli, I, Herrera, F, Martin, V, Rodriguez, C. Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci. 2002; 59(10), 17061713. DOI: 10.1007/pl00012498.CrossRefGoogle ScholarPubMed
Han, L, Wang, H, Li, L, et al. Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. J Pineal Res. 2017; 63(3), e12431. DOI: 10.1111/jpi.12431.CrossRefGoogle ScholarPubMed
Dandekar, A, Mendez, R, Zhang, K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol. 2015; 1292, 205214. DOI: 10.1007/978-1-4939-2522-3_15.CrossRefGoogle ScholarPubMed
Cipolla-Neto, J, Amaral, FG, Afeche, SC, Tan, DX, Reiter, RJ. Melatonin, energy metabolism, and obesity: a review. J Pineal Res. 2014; 56(4), 371381. DOI: 10.1111/jpi.12137.CrossRefGoogle ScholarPubMed
Park, JH, Shim, HM, Na, AY, et al. Melatonin prevents pancreatic β-cell loss due to glucotoxicity: the relationship between oxidative stress and endoplasmic reticulum stress. J Pineal Res. 2014; 56(2), 143153. DOI: 10.1111/jpi.12106.CrossRefGoogle ScholarPubMed
Cerf, ME, Williams, K, Nkomo, XI, et al. Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005; 288(5), R11221128. DOI: 10.1152/ajpregu.00335.2004.CrossRefGoogle ScholarPubMed
Black, MH, Watanabe, RM, Trigo, E, et al. High-fat diet is associated with obesity-mediated insulin resistance and β-cell dysfunction in Mexican Americans. J Nutr. 2013; 143(4), 479485. DOI: 10.3945/jn.112.170449.CrossRefGoogle ScholarPubMed
Murtaugh, LC. Pancreas and beta-cell development: from the actual to the possible. Development. 2007; 134(3), 427438. DOI: 10.1242/dev.02770.CrossRefGoogle ScholarPubMed
Offield, MF, Jetton, TL, Labosky, PA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996; 122(3), 983995. DOI: 10.1242/dev.122.3.983.CrossRefGoogle ScholarPubMed
Yang, BT, Dayeh, TA, Volkov, PA, et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012; 26(7), 12031212. DOI: 10.1210/me.2012-1004.CrossRefGoogle ScholarPubMed
Lin, CL, Vuguin, PM. Determinants of pancreatic islet development in mice and men: a focus on the role of transcription factors. Horm Res Paediatr. 2012; 77(4), 205213. DOI: 10.1159/000337219.CrossRefGoogle Scholar
Matsuoka, TA, Artner, I, Henderson, E, Means, A, Sander, M, Stein, R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci U S A. 2004; 101(9), 29302933. DOI: 10.1073/pnas.0306233101.CrossRefGoogle ScholarPubMed
Rezania, A, Bruin, JE, Arora, P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014; 32(11), 11211133. DOI: 10.1038/nbt.3033.CrossRefGoogle ScholarPubMed
Sachdeva, MM, Claiborn, KC, Khoo, C, et al. Pdx1 (MODY4) regulates pancreatic beta cell susceptibility to ER stress. Proc Natl Acad Sci U S A. 2009; 106(45), 1909019095. DOI: 10.1073/pnas.0904849106.CrossRefGoogle ScholarPubMed
Naya, FJ, Huang, HP, Qiu, Y, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997; 11(18), 23232334. DOI: 10.1101/gad.11.18.2323.CrossRefGoogle ScholarPubMed
Gasa, R, Mrejen, C, Lynn, FC, et al. Induction of pancreatic islet cell differentiation by the neurogenin-neuroD cascade. Differentiation. 2008; 76(4), 381391. DOI: 10.1111/j.1432-0436.2007.00228.x.CrossRefGoogle ScholarPubMed
Collombat, P, Hecksher-Sorensen, J, Broccoli, V, et al. The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas. Development. 2005; 132(13), 29692980. DOI: 10.1242/dev.01870.CrossRefGoogle ScholarPubMed
Sosa-Pineda, B. The gene Pax4 is an essential regulator of pancreatic beta-cell development. Mol Cells. 2004; 18(3), 289294. https://pubmed.ncbi.nlm.nih.gov/15650323/.Google ScholarPubMed
Lorberbaum, DS, Docherty, FM, Sussel, L. Animal models of pancreas development, developmental disorders, and disease. Adv Exp Med Biol. 2020; 1236, 6585. DOI: 10.1007/978-981-15-2389-2_3.CrossRefGoogle ScholarPubMed
Swisa, A, Avrahami, D, Eden, N, et al. PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest. 2017; 127(1), 230243. DOI: 10.1172/jci88015.CrossRefGoogle ScholarPubMed
Collombat, P, Mansouri, A, Hecksher-Sorensen, J, et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 2003; 17(20), 25912603. DOI: 10.1101/gad.269003.CrossRefGoogle ScholarPubMed
Bramswig, NC, Kaestner, KH. Transcriptional regulation of α-cell differentiation. Diabetes Obes Metab. 2011; 13(Suppl 1), 1320. DOI: 10.1111/j.1463-1326.2011.01440.x.CrossRefGoogle ScholarPubMed
Gosmain, Y, Cheyssac, C, Heddad Masson, M, Dibner, C, Philippe, J. Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in α-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab. 2011; 13(Suppl 1), 3138. DOI: 10.1111/j.1463-1326.2011.01445.x.CrossRefGoogle ScholarPubMed
Bähr, I, Mühlbauer, E, Schucht, H, Peschke, E. Melatonin stimulates glucagon secretion in vitro and in vivo. J Pineal Res. 2011; 50(3), 336344. DOI: 10.1111/j.1600-079X.2010.00848.x.CrossRefGoogle ScholarPubMed
Peschke, E, Schucht, H, Mühlbauer, E. Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats. J Pineal Res. 2010; 49(4), 373381. DOI: 10.1111/j.1600-079X.2010.00804.x.CrossRefGoogle ScholarPubMed
Gomes, PRL, Vilas-Boas, EA, Leite, EA, et al. Melatonin regulates maternal pancreatic remodeling and B-cell function during pregnancy and lactation. J Pineal Res. 2021; 71(1), e12717. DOI: 10.1111/jpi.12717.CrossRefGoogle ScholarPubMed
Wang, W, Zhang, C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect. 2021; 10(8), R213r228. DOI: 10.1530/ec-21-0260.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Nagagata et al. supplementary material

Table S2

Download Nagagata et al. supplementary material(PDF)
PDF 130.1 KB
Supplementary material: PDF

Nagagata et al. supplementary material

Table S1

Download Nagagata et al. supplementary material(PDF)
PDF 15.8 KB