Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T01:55:03.286Z Has data issue: false hasContentIssue false

Production of a bacteriocin active on lactate-fermenting clostridia by Lactococcus lactis subsp. lactis immobilized in coated alginate beads

Published online by Cambridge University Press:  01 June 2009

Nicla Zezza
Affiliation:
Istituto Latitero Caseario e di Biotecnologie Agroalimentari, 36016 Thiene, Italia
Gabriella Pasini
Affiliation:
Dipartimento di Biotecnologie Agrarie, Università di Padova, 35131 Padova, Italia
Angiolella Lombardi
Affiliation:
Istituto Latitero Caseario e di Biotecnologie Agroalimentari, 36016 Thiene, Italia
Annick Mercenier
Affiliation:
Dipartimento di Biotecnologie Agrarie, Università di Padova, 35131 Padova, Italia
Paolo Spettoli
Affiliation:
Dipartimento di Biotecnologie Agrarie, Università di Padova, 35131 Padova, Italia
Arturo Zamorani
Affiliation:
Dipartimento di Biotecnologie Agrarie, Università di Padova, 35131 Padova, Italia
Marco Paolo Nuti
Affiliation:
Dipartimento di Biotecnologie Agrarie, Università di Padova, 35131 Padova, Italia

Summary

We report the isolation and immobilization of a nisinogenic strain (NZ1) of Lactococcus lactis subsp. lactis, active on gas-forming lactate-fermenting clostridia responsible for late blowing of Asiago and Montasio cheeses. The bacteriocin (nisin) produced by strain NZ1 is pronase-sensitive and is released in culture media during the growth phase. Using the sensitive indicator strain Lactobacillus delbrueckii subsp. bulgaricus NCDO 1489, a rapid microtitre plate based assay was developed for quantitative determination of the bacteriocin produced by NZ1 cells, either free or immobilized in gel beads. Scanning electron microscopy of cells immobilized in calcium alginate coated beads and viable counts of the surrounding medium showed that no cell leakage occurred during a 24 h assay. The bacteriocin released from immobilized cells reached, after 5 and 24 h, concentrations comparable to that of the free cell system after 3–4 h incubation in culture media.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliani, A., Bossi, M. G., Giraffa, G. & Valdicelli, L. 1989 [S. lactis producers of nisin in the maturation of refrigerated milk for the production of Grana cheese.] Latte 14 490498Google Scholar
Audet, P., Paquin, C. & Lacroix, C. 1989 Sugar utilization and acid production by free and entrapped cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactococcus lactis subsp. lactis in a whey permeate medium. Applied and Environmental Microbiology 55 185189CrossRefGoogle Scholar
Barefoot, S. F. & Klaenhammer, T. R. 1983 Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Applied and Environmental Microbiology 45 18081815CrossRefGoogle ScholarPubMed
Battistotti, B., Bosi, F. & Bottazzi, V. 1981 [Effect of formic aldehyde on Clostridium spores.] Scienza e Tecnica Lattiero-Casearia 32 363373Google Scholar
Bottazzi, V. 1983 [Clostridia and butyric fermentation in cheese.] Industria del Latte 19 (3) 326Google Scholar
Carminati, D., Neviani, E. & Mucchetti, G. 1985 [Activity of lysozyme on vegetative cells of Clostridium tyrobutyricmn.] Latte 10 194199Google Scholar
Champagne, C. P., Gaudy, C., Poncelet, D. & Neufeld, R. J. 1992 Lactococcus lactis release from calcium alginate beads. Applied and Environmental Microbiology 58 14291434CrossRefGoogle ScholarPubMed
Cheetham, P. S. J., Blunt, K. W. & Bucke, C. 1979 Physical studies on cell immobilization using calcium alginate gels. Biotechnology and Bioengineering 21 21552168CrossRefGoogle Scholar
Correra, C. & Neri, A. 1988 [Commented code on food additives and colourings.] Milano: Scienza e DirittoGoogle Scholar
Delves-Broughton, J. 1990 Nisin and its uses as a food preservative. Food Technology 44 (11) 100112Google Scholar
Guoqiang, D., Kaul, R. & Mattiasson, B. 1991 Evaluation of alginate-immobilized Lactobacillus casei for lactate production. Applied Microbiology and Biotechnology 36 309314CrossRefGoogle Scholar
Hardie, J. M. 1986 Genus Streptococcus. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 10431047 (Eds Sneath, P. H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.). Baltimore, MD: Williams and WilkinsGoogle Scholar
Hirsch, A., Grinsted, E., Chapman, H. R. & Mattick, A. T. R. 1951 A note on the inhibition of an anaerobic sporeformer in Swiss-type cheese by a nisin-producing Streptococcus. Journal of Dairy Research 18 205206CrossRefGoogle Scholar
Hurst, A. 1981 Nisin. Advances in Applied Microbiology 27 85123CrossRefGoogle Scholar
Kim, K., Naveh, D. & Olson, N. F. 1985 Continuous acidification of milk before ultrafiltration by an immobilized cell bioreactor. II. Factors affecting the acid production of the bioreactor. Milchwissenschaf 40 645649Google Scholar
Klaenhammer, T. R. 1988 Bacteriocins of lactic acid bacteria. Biochimie 70 337349CrossRefGoogle ScholarPubMed
Laemmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680685CrossRefGoogle ScholarPubMed
Linko, P. 1985 Immobilized lactic acid bacteria. In Enzymes and Immobilized Cells in Biotechnology, pp. 2536 (Ed. Laskin, A. J.). Menlo Park, CA: Benjamin Cummings Publishing Co. Inc.Google Scholar
Matteuzzi, D., Annibaldi, S. & Sabatini, P. 1972 [Clostridium sporogenes as a cause of late blowing in Grana cheese.] Annali di Microbiologia e Enzimologia 22 145154Google Scholar
Muriana, P. M. & Klaenhammer, T. R. 1991 Purification and partial characterization of Lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Applied and Environmental Microbiology 57 114121Google Scholar
Piard, J. C., Delorme, F., Giraffa, G., Commissaire, J. & Desmazeaud, M. 1990 Evidence for a bacteriocin produced by Lactococcus lactis CNRZ 481. Netherlands Milk and Dairy Journal 44 143158Google Scholar
Steen, M. T., Chung, Y. J. & Hansen, J. N. 1991 Characterization of the nisin gene as part of a polycistronic operon in the chromosome of Lactococcus lactis ATCC 11454. Applied and Environmental Microbiology 57 11811188CrossRefGoogle ScholarPubMed
Thuault, D., Beliard, E., Le Guern, J. & Bourgeois, C.-M. 1991 Inhibition of Clostridium tyrobutyricum by bacteriocin-like substances produced by lactic acid bacteria. Journal of Dairy Science 74 11451150Google Scholar
Van Belkum, M. J., Hayema, B. J., Geis, A., Kok, J. & Venema, G. 1989 Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Applied and Environmental Microbiology 55 11871191Google Scholar
Vorlop, K. D., Steinert, H. J. & Klein, J. 1987 Cell immobilization within coated alginate beads or hollow fibers formed by ionotropic gelation. Annals of the New York Academy of Sciences 501 339342CrossRefGoogle Scholar
Wasserfall, F. & Prokopek, D. 1978 [Trials on cheese ripening. VI. Prevention by means of lysozyme of late blowing of semi-hard cheese provoked by spores of Clostridium tyrobutyricum.] Milchwissenschaft 33 288291Google Scholar
Zezza, N., Kolbe, H. W. J., Lombardi, A., Keppi, E., Mercenier, A. & Nuti, M. P. 1990 Preliminary characterization of bactericidal substances produced by Lactococcus lactis subsp. diacelylactis. FEMS Microbiology Review 87 P89Google Scholar