Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T06:58:48.002Z Has data issue: false hasContentIssue false

Markovian couplings staying in arbitrary subsets of the state space

Published online by Cambridge University Press:  14 July 2016

F. Javier López*
Affiliation:
Universidad de Zaragoza
Gerardo Sanz*
Affiliation:
Universidad de Zaragoza
*
Postal address: Dpto. Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Postal address: Dpto. Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.

Abstract

Let (Xt) and (Yt) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (Xt) and (Yt) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and KE x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
[2]. Ball, F., and Yeo, G. F. (1993). Lumpability and marginalisability for continuous-time Markov chains. J. Appl. Prob. 30, 518528.CrossRefGoogle Scholar
[3]. Buchholz, P. (1994). Exact and ordinary lumpability in finite Markov chains. J. Appl. Prob. 31, 5975.Google Scholar
[4]. Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38, 325339.Google Scholar
[5]. Doisy, M. (2000). A coupling technique for stochastic comparison of functions of Markov processes. J. Appl. Math. Decis. Sci. 4, 3964.CrossRefGoogle Scholar
[6]. Kamae, T., Krengel, G., and O’Brien, G. L. (1977). Stochastic inequalities on partially ordered spaces. Ann. Prob. 5, 899912.Google Scholar
[7]. Kemeny, J. G., and Snell, J. L. (1976). Finite Markov Chains. Springer, New York.Google Scholar
[8]. Lindvall, T. (1992). Lectures on the Coupling Method. John Wiley, New York.Google Scholar
[9]. Lindvall, T. (1997). Stochastic monotonicities in Jackson queueing networks. Prob. Eng. Inf. Sci. 11, 19.Google Scholar
[10]. López, F. J., and Sanz, G. (1998). Stochastic comparisons and couplings for interacting particle systems. Statist. Prob. Lett. 40, 93102.Google Scholar
[11]. López, F. J., and Sanz, G. (2000). Stochastic comparisons for general probabilistic cellular automata. Statist. Prob. Lett. 46, 401410.CrossRefGoogle Scholar
[12]. López, F. J., Martínez, S., and Sanz, G. (2000). Stochastic domination and Markovian couplings. Adv. Appl. Prob. 32, 10641076.CrossRefGoogle Scholar
[13]. Martínez, S., and Ycart, B. (2001). Decay rates and cutoff for convergence and hitting times of Markov chains with countably infinite state space. Adv. Appl. Prob. 33, 188205.CrossRefGoogle Scholar
[14]. Massey, W. A. (1987). Stochastic orderings for Markov processes on partially ordered spaces. Math. Operat. Res. 12, 350367.Google Scholar
[15]. Rubino, G., and Sericola, B. (1989). On weak lumpability in Markov chains. J. Appl. Prob. 26, 446457.CrossRefGoogle Scholar
[16]. Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models. John Wiley, New York.Google Scholar
[17]. Thorrison, H. (2000). Coupling, Stationarity and Regeneration. Springer, New York.Google Scholar
[18]. Whitt, W. (1986). Stochastic comparisons for non-Markov processes. Math. Operat. Res. 11, 608618.CrossRefGoogle Scholar