Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T17:55:41.169Z Has data issue: false hasContentIssue false

Large deviation theorems for weighted sums applied to a geographical problem

Published online by Cambridge University Press:  14 July 2016

Olivier Bonin*
Affiliation:
Institut Géographique National
*
Postal address: Institut Géographique National, Laboratoire COGIT, 2-4 avenue Pasteur, F-94165 Saint-Mandé Cedex, France. Email address: [email protected]

Abstract

A large deviation expansion is used to evaluate the impact of errors in a geographical database on the computation of travel times. We work in the framework of discrete random variables and improve a theorem by Book to solve this problem. Simulations are provided to illustrate the methodology.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bahadur, R. R., and Ranga Rao, R. (1960). On deviations of the sample mean. Ann. Math. Statist. 31, 10151027.Google Scholar
[2] Bonin, O. (2002). Modèle d'erreurs dans une base de données géographiques et grandes déviations pour des sommes pondérées; application à l'estimation d'erreurs sur un temps de parcours. Doctoral Thesis, Université Paris VI.Google Scholar
[3] Book, S. A. (1972). Large deviation probabilities for weighted sums. Ann. Math. Statist. 43, 12211234.CrossRefGoogle Scholar
[4] Book, S. A. (1973). A large deviation theorem for weighted sums. Z. Wahrscheinlichkeitsth. 26, 4349.Google Scholar
[5] Chaganty, N. R., and Sethuraman, J. (1993). Strong large deviation theorems and local limit theorems. Ann. Prob. 21, 16711690.CrossRefGoogle Scholar
[6] Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Nümer. Math. 1, 269271.Google Scholar
[7] Goodchild, M., and Gopal, S. (eds) (1998). Accuracy of Spatial Databases. Hermes, Paris.Google Scholar
[8] Höglund, T. (1979). A unified formulation of the central limit theorem for small and large deviations from the mean. Z. Wahrscheinlichkeitsth. 49, 105117.Google Scholar
[9] Hwang, H.-K. (1998). Large deviations of combinatorial distributions. II. Local limit theorems. Ann. Appl. Prob. 8, 163181.Google Scholar
[10] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin.Google Scholar
[11] Saulis, L., and Statulevicius, V. (1991). Limit Theorems for Large Deviations. Kluwer, Dordrecht.Google Scholar
[12] Wolf, W. (1980). Some remarks on large deviations for weighted sums if Cramér's condition is not satisfied. In Mathematical Statistics (Banach Center Pub. 6), eds Bartoszyński, R., Koronacki, J. and Zieliński, R., Polish Scientific Publishers, Warsaw, pp. 347352.Google Scholar