Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T02:20:41.708Z Has data issue: false hasContentIssue false

Validation of microsatellite molecular markers linked with resistance to Bipolaris sorokiniana in wheat (Triticum aestivum L.)

Published online by Cambridge University Press:  21 March 2017

B. TEMBO*
Affiliation:
African Centre for Crop Improvement, University of KwaZulu-Natal. College of Agriculture, Engineering and Science, School of Agricultural, Earth and Environmental Sciences, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa Zambia Agricultural Research Institute (ZARI), Mt. Makulu Research Station, P/B 7, Chilanga, Zambia
J. SIBIYA
Affiliation:
African Centre for Crop Improvement, University of KwaZulu-Natal. College of Agriculture, Engineering and Science, School of Agricultural, Earth and Environmental Sciences, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
P. TONGOONA
Affiliation:
West African Centre for Crop Improvement, University of Ghana, PMB 30 Legon, Ghana
L. TEMBO
Affiliation:
Department of Plant Science, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Spot blotch disease caused by Bipolaris sorokiniana (Sacc.) Shoem causes yield losses and reduces grain quality in wheat. Molecular markers reported to be linked with resistance to B. sorokiniana could accelerate the identification of resistant genotypes as they are independent of the environmental effect. However, before they can be utilized for marker assisted selection (MAS), validation in an independent population is required. The objective of the present study was therefore to validate three simple sequence repeat (SSR) molecular markers (Xwgm570, Xgwm544 and Xgwm437) linked with resistance to B. sorokiniana. The markers were validated using 66 wheat genotypes comprising 11 parental genotypes and 55 F2 progenies. Single marker analysis was performed using simple linear regression to ascertain the relationship between the marker and the trait. All the markers were confirmed to be associated with resistance. They all gave significant association with resistance to B. sorokiniana. The markers amplified DNA fragments in the resistant parental genotypes that were similar to those observed in resistant F2 progenies, but absent in the susceptible ones. Hence, these markers could be useful in increasing the efficiency of selection for resistance to B. sorokiniana in wheat breeding. Since the R2 values are low, a combination of two or three SSR markers can be employed during MAS. This was evident by the multiple linear equation which gave a combined R2 value of 18·0%, obtained from the inclusion of all three markers.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acharya, K., Dutta, A. K. & Pradhan, P. (2011). Bipolaris sorokiniana (Sacc.) Shoem: the most destructive wheat fungal pathogen in the warmer areas. Australian Journal of Crop Science 5, 10641071.Google Scholar
Adhikari, T. B., Gurung, S., Hansen, J. M., Jackson, E. W. & Bonman, J. M. (2012). Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. The Plant Genome 5, 116.Google Scholar
Aggarwal, R., Singh, V. B., Shukla, R., Gurjar, M. S., Gupta, S. & Sharma, T. R. (2010). URP-based DNA fingerprinting of Bipolaris sorokiniana isolates causing spot blotch of wheat. Journal of Phytopathology 158, 210216.Google Scholar
Aggarwal, R., Gupta, S., Banerjee, S. & Singh, V. B. (2011). Development of a SCAR marker for detection of Bipolaris sorokiniana causing spot blotch of wheat. Canadian Journal of Microbiology 57, 934942.CrossRefGoogle ScholarPubMed
Anandhan, T., Manivanna, N., Vindhiyavarman, P. & Jeyakumar, P. (2010). Single marker analysis in sunflower (Helianthus annuus L.). Electronic Journal of Plant Breeding 1, 12271234.Google Scholar
Anitha, B. K., Manivannan, N. & Anandakumar, C. R. (2014). Validation of SSR markers associated with QTLs for pod and kernel traits in groundnut (Arachis hypogaea L.). International Journal of Agricultural Science 4, 077082.Google Scholar
Awasthi, S. & Lal, J. P. (2014). Validation of SSR markers associated with drought tolerant QTLs in rice (Oryza sativa L.). International Journal of Science Footprints 2, 99113.Google Scholar
Bernardo, A. N., Bowden, R. L., Rouse, M. N., Newcomb, M. S., Marshall, D. S. & Bai, G. (2013). Validation of molecular markers for new stem rust resistance genes in U.S. hard winter wheat. Crop Science 53, 755764.Google Scholar
Chaurasia, S., Joshi, A. K., Dhari, R. & Chand, R. (1999). Resistance to foliar blight of wheat: a search. Genetic Resources and Crop Evolution 46, 469475.Google Scholar
CIMMYT (2005). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory, 3rd edn. Mexico, D.F.: CIMMYT.Google Scholar
Concibido, V. C., Diers, B. W. & Prakash, R. A. (2004). Review and interpretation a decade of QTL mapping for cyst nematode resistance in soybean. Crop Science 44, 11211131.CrossRefGoogle Scholar
Duveiller, E. & Sharma, R. C. (2012). Wheat resistance to spot blotch or foliar blight. In Disease Resistance in Wheat (Ed. Sharma, I.), pp. 120135. Wallingford, UK: CABI.CrossRefGoogle Scholar
Duveiller, E., Singh, R. P. & Nicol, J. M. (2007). The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157, 417430.CrossRefGoogle Scholar
Eyal, Z., Scharen, A. L., Prescott, J. M. & Van Ginkel, M. (1987). The Septoria Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, D.F.: CIMMYT.Google Scholar
Francis, D. M., Merk, H. L. & Namuth-Covert, D. (2011). Introduction to Single Marker Analysis (SMA). Washington, D.C.: USDA/eXtension. Available from: http://articles.extension.org/pages/32552/introduction-to-single-marker-analysis-sma (verified 24 January 2017).Google Scholar
Fernando, H. K. D. H., Kajenthini, T. J. C., Rebeira, S. P., Bamunuarachchige, T. C. & Wickramasinghe, H. A. M. (2015). Validation of molecular markers for the analysis of genetic diversity of amylase content and gel consistency among representative rice varieties in Sri Lanka. Tropical Agricultural Research 26, 317328.Google Scholar
Gajjar, K. N., Mishra, G. P., Radhakrishnan, T., Dodia, S. M., Rathnakumar, A. L., Kumar, N., Kumar, S., Dobaria, J. R. & Kumar, A. (2014). Validation of SSR markers linked to the rust and late leaf spot diseases resistance in diverse peanut genotypes. Australian Journal of Crop Science 8, 927936.Google Scholar
Haley, C. S. & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315324.Google Scholar
Islam, M. R., Gregorio, G. B., Salam, M. A., Collard, B. C. Y., Tumimbang-Raiz, E., Adorada, D. L., Mendoza, R. D., Singh, R. K. & Hassan, L. (2011). Validation of a major QTL for salinity tolerance on chromosome 1 of rice in three different breeding populations. Agrochimica 55, 355366.Google Scholar
Joshi, A. K. & Chand, R. (2002). Variation and inheritance of leaf angle, and its association with spot blotch (Bipolaris sorokiniana) severity in wheat (Triticum aestivum). Euphytica 124, 283291.CrossRefGoogle Scholar
Joshi, A. K., Chand, R., Kumar, S. & Singh, R. P. (2004). Leaf tip necrosis: a phenotypic marker associated with resistance to spot blotch disease in wheat. Crop Science 44, 792796.Google Scholar
Joshi, A. K., Kumari, M., Singh, V. P., Reddy, C. M., Kumar, S., Rane, J. & Chand, R. (2007). Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica 153, 5971.Google Scholar
Kuldeep, T., Nandan, R., Kumar, U., Prasad, L. C., Chand, R. & Joshi, A. K. (2008). Inheritance and identification of molecular markers associated with spot blotch (Cochliobolus sativus L.) resistance through microsatellites analysis in barley. Genetics and Molecular Biology 31, 734742.Google Scholar
Kumar, U., Kumar, S., Tyagi, K., Chand, R. & Joshi, A. K. (2005). Microsatellite markers for resistance to spot blotch in spring wheat. Communications in Agricultural and Applied Biological Science 70, 5960.Google ScholarPubMed
Kumar, U., Joshi, A. K., Kumar, S., Chand, R. & Röder, M. S. (2009). Mapping of resistance to spot blotch disease caused by Bipolaris sorokiniana in spring wheat. Theoretical and Applied Genetics 118, 783792.Google Scholar
Kumar, U., Joshi, A. K., Kumar, S., Chand, R. & Röder, M. S. (2010). Mapping of quantitative trait loci for resistance to spot blotch caused by Bipolaris sorokiniana in wheat (T. aestivum L.) lines ‘Ning 8201’ and Chirya 3’. Molecular Breeding 26, 477491.Google Scholar
Mondal, S., Badigannavar, A. M. & Murty, G. S. S. (2008). RAPD markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 159, 233239.CrossRefGoogle Scholar
Mondal, S., Badigannavar, A. M. & D'Souza, S. F. (2012). Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii . Molecular Breeding 29, 467476.Google Scholar
Payne, R. W., Murray, D., Harding, S., Baird, D. & Soutar, D. (2011). GenStat for Windows, 14th edn. Hemel Hempstead, UK: VSN International.Google Scholar
Reena, , & Jaiwal, P. K. (2014). Confirmation of intra and inter-specific F1 hybrids for salt tolerance in mungbean (Vignaradiata (L). Wilczek) genotype using trait-specific SSRs. Journal International Academic Research for Multidisciplinary 2, 438450.Google Scholar
Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P. & Ganal, M. W. (1998). A microsatellite map of wheat. Genetics 149, 20072023.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (2011). SAS 9·3 Software. Cary, NC, USA: SAS Institute Inc.Google Scholar
Sehrawat, N., Yadav, M., Bhat, K. V., Sairam, R. K. & Jaiwal, P. K. (2016). Introgression of Mungbean yellow mosaic virus resistance in Vigna mungo (L.) hepper and purity testing of F1 hybrids using SSRs. Turkish Journal of Agriculture and Forestry 40, 95100.Google Scholar
Sharma, R. C., Duveiller, E. & Jacquemin, J. M. (2007). Microsatellite markers associated with spot blotch resistance in spring wheat. Journal of Phytopathology 155, 316319.Google Scholar
Sharp, P. J., Johnston, S., Brown, G., McIntosh, R. A., Pallotta, M., Carter, M., Bariana, H. S., Khatkar, S., Lagudah, E. S., Singh, R. P., Khairallah, M., Potter, R. & Jones, M. G. K. (2001). Validation of molecular markers for wheat breeding. Australian Journal of Agricultural Research 52, 13571366.CrossRefGoogle Scholar
Young, R. A. & Kelly, J. D. (1997). RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Science 37, 940946.CrossRefGoogle Scholar