Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T18:05:51.041Z Has data issue: false hasContentIssue false

Manganese-resistant mutants of Azospirillum brasilense: their response of associative nitrogen fixation, dry-matter production and nitrogen content of cheena (Panicum miliaceum L.) to different amounts of applied nitrogen in acid soil

Published online by Cambridge University Press:  27 March 2009

R. Rai
Affiliation:
Rajendra Agricultural University, Dholi Campus, Dholi, Muzaffarpur-84312, Bihar, India

Summary

Six nitrosoguanidine-induced manganese-resistant mutants of Azospirillum brasilense were isolated and used for associative N2 fixation studies with cheena (Panicum miliaceum L.) in acid soil. Three mutants showed cross-resistance to aluminium and neomycin, but of these three only one showed cross-resistance to streptomycin. Inoculation of cheena with A. brasilense and its mutants at different rates of applied nitrogen led to a significant increase in associative N2 fixation, N content, dry-matter production and grain yield in acid soil. A saving of about 20 kg N/ha could be achieved by inoculating seeds of cheena with these mutant strains in acid soil.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, L. E., Russel, S. A. & Evans, H. J. (1979). Inoculation of millet with Azospirillum. Plant and Soil 52, 4957.CrossRefGoogle Scholar
Chan, Y. K., Nelson, L. M. & Knowles, R. (1980). Hydrogen metabolism of Azospirillum brasilense in nitrogen free medium. Canadian Journal of Microbiology 26, 11261131.CrossRefGoogle ScholarPubMed
Cohen, L., Okon, Y., Kigel, J., Nur, I. & Henis, Y. (1980). Increase in dry weight and total nitrogen content in Zea mays and Setaria italica associated with nitrogenfixing Azospirillum spp. Plant Physiology 66, 246249.CrossRefGoogle ScholarPubMed
Dart, P. J. & Wani, S. P. (1982). Non-symbiotic nitrogen fixation and soil fertility. In Non-symbiotic Nitrogen Fixation and Organic Matter in the Tropics. 12th International Congress of Soil Science, 02 8–16, New Delhi, pp. 127.Google Scholar
De-Polli, H., Boyer, C. D. & Neyra, C. A. (1982). Nitrogenase activity associated with roots and stems of field-grown corn (Zea mays L.) plants. Plant Physiology 70, 16091613.CrossRefGoogle ScholarPubMed
Demerec, M. & Hanson, J. (1951). Mutagenic action of manganese chloride. Cold Spring Harbor Symposium of Quantitative Biology 16, 215228.CrossRefGoogle ScholarPubMed
Döbereiner, J. (1980). Forage grasses and grain crops. In Methods for Evaluating Biological Nitrogen Fixation (ed. Bergersen, F. J.), pp. 535555. Chichester: Wiley.Google Scholar
Döbereiner, J. & Baldani, V. (1979). Selective infection of maize roots by streptomycin-resistant Azospirillum lipoferum and other bacteria. Canadian Journal of Microbiology 25, 12641269.CrossRefGoogle ScholarPubMed
Fay, C. D. & Gerloff, G. C. (1972). Response of Chlorella pyrenoidosa to aluminium and low pH. Journal of Phycology 8, 268271.CrossRefGoogle Scholar
Gauthier, D. & Elmerich, C. (1977). Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiology Letters 10, 101104.CrossRefGoogle Scholar
Jackson, M. L. (1967). Soil Chemical Analysis. India: Prentice Hall.Google Scholar
Kapulnik, Y., Kigel, J., Okon, Y., Nur, I. & Henis, Y. (1981). Effect of Azospirillum inoculation on some growth parameters and N content of wheat, sorghum and panicum. Plant and Soil 61, 6570.CrossRefGoogle Scholar
Kavimandan, S. K., Subba Rao, N. S. & Mohrir, A. V. (1978). Isolation of Spirillum lipoferum from the stems of wheat and nitrogen fixation in enrichment cultures. Current Science 47, 9698.Google Scholar
Kondo, I., Ishikawa, T. & Nakahara, H. (1974). Mercury and cadmium resistance mediated by the penicillinase plasmid in Staphylococcus aureus. Journal of Bacteriology 117, 17.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, M. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Munns, D. N. (1977). Soil acidity and related factors. In Proceedings of a Workshop on Exploiting the Legume–Rhizobium Symbiosis in Tropical Agricultures, 08 1977, University of Hawaii, pp. 211236.Google Scholar
Novick, R. P. & Roth, C. (1978). Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. Journal of Bacteriology 95, 13351342.CrossRefGoogle Scholar
Okon, Y., Albrecht, S. L. & Burris, R. H. (1977). Methods for growing Spirillum lipoferum and counting it in pure culture and association with plants. Applied and Environmental Microbiology 33, 8588.CrossRefGoogle ScholarPubMed
Orgel, A. & Orgel, L. E. (1965). Induction of mutations in bacteriophage T4 with divalent manganese. Journal of Molecular Biology 14, 453457.CrossRefGoogle ScholarPubMed
Putrament, A., Baranowska, H., Ejchart, A. & Jaohymezyck, W. (1977). Manganese mutagenesis in yeast, Mn uptake, mit DNA replication and ER induction. Comparison with other divalent cations. Molecular General Genetics 151, 6776.CrossRefGoogle Scholar
Rai, R. (1983). Efficacy of associative N2-fixation by streptomycin-resistant mutants of Azospirillum brasilense with genotypes of chick pea Rhizobium strains. Journal of Agricultural Science, Cambridge 100, 7580.CrossRefGoogle Scholar
Rai, R. (1985 a). Studies on nitrogen fixation by antibioticresistant mutants of Azospirillum brasilense and their interaction with cheena (Panicum miliaceum L.) genotypes in calcareous soil. Journal of Agricultural Science, Cambridge 105, 261270.CrossRefGoogle Scholar
Rai, R. (1985 b). Effect of machete (herbicide) on growth, nitrogen fixation and cell constituents of Azospirillum brasilense. Science and Culture 51, 5758.Google Scholar
Rai, R. (1986). Manganese-mediated resistance to aluminium and antibiotics in strains of Azospirillum brasilense and their interaction with rice genotypes in acid soil. Journal of Agricultural Science, Cambridge 106, 279285.CrossRefGoogle Scholar
Rai, R. & Prasad, V. (1983). Effect of soil acidity factors on nodulation, active iron content of nodules and relative efficiency of symbiotic N2-fixation by mutant strains of Lens esculenta Rhizobium. Journal of Agricultural Science, Cambridge 100, 607611.CrossRefGoogle Scholar
Rai, R., Prasad, V. & Shukla, I. C. (1984). Interaction between finger millet (Eleusine coracana) genotypes and drug-resistant mutants of Azospirillum brasilense in calcareous soil. Journal of Agricultural Science, Cambridge 102, 521529.CrossRefGoogle Scholar
Rajaramamohan Rao, V., Nayak, D. M., Charyulu, P. B. B. N. & Adhya, T. K. (1983). Yield response of rice to root inoculation with Azospirillum. Journal of Agricultural Science, Cambridge 100, 689691.Google Scholar
Singh, S. P. & Kashyap, A. K. (1978). Manganese toxicity and mutagenesis in two blue-green algae. Environmental and Experimental Botany 18, 4753.CrossRefGoogle Scholar
Subba Rao, N. S., Tilak, K. V. B. R., Singh, C. S. & Lakshmi Kumari, M. (1979). Response of few economic species of graminaceous plants to inoculation with Azospirillum brasilense. Current Science 48, 133134.Google Scholar
Tien, T. M., Gaskin, M. H. & Hubbell, D. H. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on growth of pearl millet. Applied and Environmental Microbiology 37, 10121024.CrossRefGoogle ScholarPubMed
Volpon, A. G. T., De-Polli, H. & Döbereiner, J. (1981). Physiology of nitrogen fixation in Azospirillum lipoferum Br 17 (ATCC 29707). Archives of Microbiology 128, 371375.CrossRefGoogle Scholar