Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T16:10:17.608Z Has data issue: false hasContentIssue false

The incidence of Streptococcus bovis in cattle

Published online by Cambridge University Press:  27 March 2009

Constance Higginbottom
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr
D. W. F. Wheater
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr

Extract

1. The numbers of Streptococcus bovis in the rumen of a heifer and a steer, each having a permanent rumen fistula, were shown to remain relatively constant within the range 105 to 107 per ml. rumen liquid (strained rumen contents) over a period of more than 3 years.

2. The numbers of Strep. bovis were little affected by the change in diet from stall-feeding (oats, beans, hay and straw) to grass or vice versa.

3. There was a slight increase in the numbers of Strep. bovis following each meal when the animals were stall-fed, but no appreciable variation in numbers throughout the day when the animals were at grass.

4. Strep. bovis has also been isolated from the rumen of freshly slaughtered cattle and sheep from different parts of the country, from the rumen of goats and calves and from the faeces of cattle, goats and in small numbers associated with Strep. equinus from horse dung.

5. Strep. bovis was found in the contents of the omasum, large intestine and caecum of three cattle, but in the small intestine of only one of these animals. Very small numbers of Strep. bovis were detected in the abomasal contents of only four of twelve animals examined.

6. The characteristics of these strains of Strep. bovis have been described. The synthesis of an iodophilic polysaccharide by Strep. bovis has been demonstrated.

7. A possible role of Strep. bovis in the decomposition of starch and other carbohydrates in the rumen is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd-el-Malek, Y. & Gibson, T. (1948). J. Dairy Res. 15, 233.CrossRefGoogle Scholar
Alexander, F., Macpherson, M. F. D. & Oxford, A. E. (1952). J. Comp. Path. 62, 252.CrossRefGoogle Scholar
Balch, C. C. & Johnson, V. W. (1948). Vet. Rec. 60, 446.Google Scholar
Bång, P. (1936). Cited by Orla-Jensen, S. (1943). The Lactic Acid Bacteria, p. 45. Supplementary Volume. Copenhagen: Munksgaard.Google Scholar
Barritt, M. M. (1936). J. Path. Bact. 42, 441.CrossRefGoogle Scholar
Bergey's Manual of Determinative Bacteriology, (1948). 6th ed. Ed. Breed, R. S., Murray, E. G. D. and Hitchins, A. P., p. 321. London: Baillière, Tindall and Cox.Google Scholar
Buemann, A. W. (1913). Zbl. Bakt. (1. Abt. Orig.), 71, 291.Google Scholar
Davis, J. G. (1936). Proc. Soc. Agric. Bact. Paper no. 5.Google Scholar
Elsden, S. R. (1946). J. Exp. Biol., 22, 51.CrossRefGoogle Scholar
Ewing, P. W. & Wright, L. H. (1918). J. Agric. Res. 13, 639. Cited by Dukes, H. H. (1943). The Physiology of Domestic Animals, p. 290. New York: The Comstock Publishing Co. Inc.Google Scholar
Fischer, A. (1916). Zbl. Bakt. (1. Abt. Orig.), 77, 6.Google Scholar
Fuller, C. A. & Armstrong, V. A. (1913). J. Infect. Dis. 13, 442.CrossRefGoogle Scholar
Gall, L. S. & Huhtanen, C. N. (1951). J. Dairy Sci. 34, 353.CrossRefGoogle Scholar
Gall, L. S., Stark, C. N. & Loosli, J. K. (1947). J. Dairy Sci. 30, 891.CrossRefGoogle Scholar
Hajna, A. A. & Perry, C. (1943). Amer. J. Publ. Hlth, 33, 550.CrossRefGoogle Scholar
Henneberg, W. (1919). Berl. klin. Wschr. 56, 693.Google Scholar
Houston, A. C. (1906). 34th Ann. Hep. Local Govt. Bd. Cited by Winslow, C. E. A. & Palmer, G. T. (1910). J. Infect. Dis. 7, 1.Google Scholar
Huhtanen, C. N., Rogers, M. R. & Gall, L. S. (1952). J. Bact. 64, 17.CrossRefGoogle Scholar
Hungate, R. E., Dougherty, R. W., Bryant, M. P. & Cello, R. M. (1952). Cornell Vet. 42, 423.Google Scholar
Kreipe, H. (1927). Untersuchungen über die Milchsäure-bakterien-Flora des Kuhpansen. Dissertation. Kiel.Google Scholar
Macpherson, M. & Oxford, A. E. (1950). J. Gen. Microbiol. 7, ii.Google Scholar
Mosiman, W. (1944). Landw. Jb. Schweiz, 45, 715.Google Scholar
O'Meara, R. A. Q. (1931). J. Path. Bact. 34, 40.CrossRefGoogle Scholar
Orla-Jensen, S. (1919). The Lactic Acid Bacteria. Copenhagen: Høst.Google Scholar
Orla-Jensen, S. (1943). The Lactic Acid Bacteria. Supplementary volume. Copenhagen: Munksgaard.Google Scholar
Phillipson, A. T. & McAnally, R. A. (1942). J. Exp. Biol. 19, 199.CrossRefGoogle Scholar
Schieblich, M. (1929). Die Mitwirkung der Bacierien bei der Verdauung, p. 310. In Mangold, M.; Handbuch der Ernahrung und des Stoffwechsels der Landwirtschaftlichen Nutziere, Bd. 11, Verdauung und Ausscheidung. Berlin: Springer.Google Scholar
Shattock, P. M. F. (1949). J. Gen. Microbiol. 3, 80.CrossRefGoogle Scholar
Sherman, J. M. (1937). Bact. Rev. 1, 1.Google Scholar
Van der Wath, J. G. (1948). Onderstepoort J. Vet. Sci. 23, 367.Google Scholar
Voss, A. (1929). Milchw. Forsch. 8, 383.Google Scholar
White, J. C. & Sherman, J. M. (1943). J. Dairy Sci. 26, 371.CrossRefGoogle Scholar
Williams, V. J. & Moir, R. J. (1951). Aust. J. Sci. Res. 4, 377.Google Scholar
Winslow, C. E. A. & Palmer, G. T. (1910). J. Infect. Dis. 7, 1.CrossRefGoogle Scholar