Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T18:43:06.916Z Has data issue: false hasContentIssue false

Inbreeding effects on a winter squash landrace

Published online by Cambridge University Press:  16 July 2010

A. L. TSIVELIKAS
Affiliation:
Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
M. S. KOUTSIKA-SOTIRIOU*
Affiliation:
Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Estimates of inbreeding effects in a landrace are necessary in order to acquire information on the presence of different types of gene action for important traits. Twelve lines with different levels of inbreeding coefficients (F=0, 0·25, 0·50 or 0·75) were developed from three phenotypically selected families of a winter squash landrace (Cucurbita moschata Duchesne) between 2000 and 2002 in the area of Thermi-Thessaloniki, Greece. During 2003, a field experiment was established at this location to evaluate the lines. The agronomical characters measured were: the number and weight of total commercial fruits, days to first female blossom, seed weight, size of pollen grains and water-stress tolerance. Comparisons were also made of morphological characters, the dry matter, the total soluble solids and the pH of fruits. Lines with inbreeding coefficient F=0·50 were found to have the highest values for most of the measured characteristics. Significant family×inbreeding interactions were found, revealing different trends for the linear, quadratic and cubic components of each family with inbreeding coefficients. Three F=0·50 lines selected from within each representative family were evaluated along with four winter squash landraces from the C. moschata collection of the Greek Gene Bank, during 2004 in the area of Thermi. These F=0·50 lines showed a superior performance of three components contributing to yield, indicating that one generation of selfing improved the agronomic performance maintaining concurrently the substantial characteristics of the landrace.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acevedo, E. & Fereres, E. (1993). Resistance to abiotic stress. In Plant Breeding: Principles and Prospects (Eds Hayward, M. D., Bosemark, N. O. & Romagoza, I.), pp. 406421. London: Chapman and Hall.CrossRefGoogle Scholar
Bernardo, R. (2002). Breeding for Quantitative Traits in Plants. Woodbury, MN: Stemma Press.Google Scholar
Borghi, B., Maggiore, T., Boggini, G. & Bonali, F. (1973). Inbreeding depression and heterosis in Cucurbita pepo evaluated by means of diallelical analysis. Genetika Agraria 27, 415431.Google Scholar
Camacho Villa, T. C., Maxted, N., Scholten, M. & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources 3, 373384.Google Scholar
Cardoso, A. I. I. (2004). Depression by inbreeding after four successive self-pollination squash generations. Scientia Agricola 61, 224227.CrossRefGoogle Scholar
Ceccarelli, S., Grando, S. & van Leur, J. A. G. (1987). Genetic diversity in barley landraces from Syria and Jordan. Euphytica 36, 389405.Google Scholar
Chekalina, I. N. (1975). Effect of inbreeding on variability of winter squash. Genetika 12, 4549.Google Scholar
Cummings, M. B. & Jenkins, E. (1928). Pure line studies with ten generations of ‘Hubbard’ squash. Vermont Agricultural Experimental Station Bulletin 280. Vermont, VT: University of Vermont and State Agricultural College.Google Scholar
Cummings, M. B. & Stone, W. C. (1921). Yield and quality in Hubbard squash. Vermont Agricultural Experimental Station Bulletin 222. Vermont, VT: University of Vermont and State Agricultural College.Google Scholar
Doijode, S. D. & Sulladmath, U. V. (1983). Preliminary studies on heterosis in pumpkin (Cucurbita moschata Poir.). Mysore Journal of Agricultural Sciences 13, 3034.Google Scholar
Dudash, M. R., Carr, D. E. & Fenster, C. B. (1997). Five generations of enforced selfing and outcrossing in Mimulus guttatus: inbreeding depression variation at the population and family level. Evolution 51, 5465.Google Scholar
Erwin, A. T. & Haber, E. S. (1929). Species and varietal crosses in cucurbits. Iowa Agricultural Experimental Station Bulletin 263. Ames, IA: Agricultural Experiment Station, Iowa State College of Agriculture and Mechanical Arts.Google Scholar
Fasoula, D. A. & Fasoula, V. A. (1997). Competitive ability and plant breeding. Plant Breeding Reviews 14, 89138.Google Scholar
Fasoula, V. A. & Fasoula, D. A. (2000). Honeycomb breeding: principles and applications. Plant Breeding Reviews 18, 177250.Google Scholar
Fasoula, V. A. & Fasoula, D. A. (2002). Principles underlying genetic improvement for high and stable crop yield potential. Field Crops Research 75, 191209.Google Scholar
Fasoula, V. A. & Fasoula, D. A. (2003). Partitioning crop yield into genetic components. In Handbook of Formulas and Software for Plant Geneticists and Breeders (Ed. Kang, M. S.), pp. 321327. New York: The Haworth Press.Google Scholar
Fasoulas, A. C. & Fasoula, V. A. (1995). Honeycomb selection designs. Plant Breeding Reviews 13, 87139.CrossRefGoogle Scholar
Ferrari, M. J. (2006). Mixing models and the geometry of epidemics. PhD thesis, Pennsylvania State University, Pennsylvania, PA, USA.Google Scholar
Ferrari, M. J., Stephenson, A. G., Mescher, M. C. & de Moraes, C. M. (2006). Inbreeding effects on blossom volatiles in Cucurbita pepo subsp. texana (Cucurbitaceae). American Journal of Botany 93, 17681774.Google Scholar
Frankel, O. H. (1989). Principles and strategies of evaluation plant genetic resources. In The Use of Plant Genetic Resources (Eds Brown, A. H. D., Frankel, O. H., Marshall, D. R. & Williams, J. T.), pp. 245262, Cambridge, UK: Cambridge University Press.Google Scholar
Hallauer, A. R. (1978). Potential of exotic germplasm for maize improvement. In Maize Breeding and Genetics (Ed. Walden, D. B.), pp. 229247. New York: John Wiley and Sons.Google Scholar
Harlan, J. R. (1975). Crops and Man. Madison, WI: ASA-CSSA-SSSA.Google Scholar
Hayes, C. N., Winsor, J. A. & Stephenson, A. G. (2004). Inbreeding influences herbivory in Cucurbita pepo ssp. texana (Cucurbitaceae). Oecologia 140, 601608.Google Scholar
Hayes, C. N., Winsor, J. A. & Stephenson, A. G. (2005 a). A comparison of male and female responses to inbreeding in Cucurbita pepo subsp. texana (Cucurbitaceae). American Journal of Botany 92, 107115.Google Scholar
Hayes, C. N., Winsor, J. A. & Stephenson, A. G. (2005 b). Environmental variation influences the magnitude of inbreeding depression in Cucurbita pepo ssp. texana (Cucurbitaceae). Journal of Evolutionary Biology 18, 147155.Google Scholar
Hayes, C. N., Winsor, J. A. & Stephenson, A. G. (2005 c). Multigenerational effects of inbreeding in Cucurbita pepo ssp. texana (Cucurbitaceae). Evolution 59, 276286.Google Scholar
Janick, J. (1999). Exploitation of heterosis: uniformity and stability. In The Genetics and Exploitation of Heterosis in Crops (Eds Coors, J. G. & Pandey, S.), pp. 319333. Madison, WI: ASA-CSSA-SSSA.Google Scholar
Jóhannsson, M. H., Gates, M. J. & Stephenson, A. G. (1998). Inbreeding depression affects pollen performance in Cucurbita texana. Journal of Evolutionary Biology 11, 579588.Google Scholar
Kohn, J. R. & Biardi, J. E. (1995). Outcrossing rates and inferred levels of inbreeding depression in gynodioecious Cucurbita foetidissima (Cucurbitaceae). Heredity 75, 7783.Google Scholar
Koutsika-Sotiriou, M., Traka-Mavrona, E., Tsivelikas, A. L., Mpardas, G., Mpeis, A. & Klonari, E. (2004). Use of genetic resources in a dual approach system toward selecting improved scion/rootstock grafting combinations of melon (Cucumis melo) on Cucurbita spp. In Progress in Cucurbit Genetics and Breeding Research, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding (Eds Lebeda, A. & Paris, H. S.), pp. 163167. Olomouc, Czech Republic: Palacký University.Google Scholar
Lamkey, K. R. & Hallauer, A. R. (1987). Heritability estimated from recurrent selection experiments in maize. Maydica 32, 6178.Google Scholar
Louveaux, J., Maurizio, A. & Vorwohl, G. (1970). Methods of melissopalynology. Bee World 51, 125138.CrossRefGoogle Scholar
Ríos Labrada, H., Soleri, D. & Cleveland, D. A. (2002). Conceptual changes in Cuban plant breeding in response to a national socio-economic crisis: the example of pumpkins. In Farmers, Scientists and Plant Breeding. Integrating Knowledge and Practice (Eds Cleveland, D. A. & Soleri, D.), pp. 213238. Wallingford, UK: CABI.Google Scholar
Schuster, W., Haghdadi, M. R. & Michael, J. (1974). Inzüchtwirkung und heterosiseffekt beim Ölkürbis (Cucurbita pepo L.). Zeitschrift für Pflanzenzüchtung 73, 112124.Google Scholar
Sheppard, L. J., Franssen, I. & Cape, J. N. (1995). Frost hardiness of Norway spruce treated with acid mist. Evaluation of the electrolyte leakage rate technique. Environmental and Experimental Botany 35, 139149.Google Scholar
Simmonds, N. W. (1979). Principles of Crop Improvement. New York: Longman.Google Scholar
Sinnott, E. W. & Durham, G. B. (1922). Inheritance in the summer squash. Journal of Heredity 13, 177186.Google Scholar
Southgate, D. A. T. (1976). Determination of Food Carbohydrates. London: Applied Science Publishers Ltd.Google Scholar
Stephenson, A. G., Hayes, C. N., Jóhannsson, M. H. & Winsor, J. A. (2001). The performance of microgametophytes is affected by inbreeding depression and hybrid vigor in the sporophytic generation. Sexual Plant Reproduction 14, 7783.Google Scholar
Stephenson, A. G., Leyshon, B., Travers, S. E., Hayes, C. N. & Winsor, J. A. (2004). Interrelationships among inbreeding, herbivory, and disease on reproduction in a wild gourd. Ecology 85, 30233034.CrossRefGoogle Scholar
Tanksley, S. D., Zamir, D. & Rick, C. M. (1981). Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science 213, 453455.CrossRefGoogle ScholarPubMed
Tokatlidis, I. S. & Koutroubas, S. D. (2004). A review study of the maize hybrids' dependence on high plant populations and its implications on crop yield stability. Field Crops Research 88, 103114.CrossRefGoogle Scholar
Tokatlidis, I. S., Koutsika-Sotiriou, M. & Fasoulas, A. C. (2001). The development of density independent hybrids in maize. Maydica 46, 2125.Google Scholar
Tollenaar, M. & Wu, J. (1999). Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science 39, 15971604.Google Scholar
Tsivelikas, A. L., Koutita, O., Anastasiadou, A., Skaracis, G. N., Traka-Mavrona, E. & Koutsika-Sotiriou, M. (2009). Description and analysis of genetic diversity among squash accessions. Brazilian Archives of Biology and Technolology 52, 271283.CrossRefGoogle Scholar
Vogler, D. W., Filmore, K. & Stephenson, A. G. (1999). Inbreeding depression in Campanula rapunculoides L. I. A comparison of inbreeding depression in plants derived from strong and weak self-incompatibility phenotypes. Journal of Evolutionary Biology 12, 483494.Google Scholar
Willing, R. P. & Mascarenhas, J. P. (1984). Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiology 75, 865868.Google Scholar
Zeven, A. C. (1998). Landraces: a review of definitions and classifications. Euphytica 104, 127139.Google Scholar