Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T17:36:30.843Z Has data issue: false hasContentIssue false

Estimating enteric methane emissions from Chilean beef fattening systems using a mechanistic model

Published online by Cambridge University Press:  08 April 2014

R. A. ARIAS*
Affiliation:
Escuela de Agronomía, Universidad Católica de Temuco, Temuco,Chile Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Temuco, Chile
A. CATRILEO
Affiliation:
Instituto de Investigaciones Agropecuarias CRI Carillanca, Temuco, Chile
R. LARRAÍN
Affiliation:
Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
R. VERA
Affiliation:
Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
A. VELÁSQUEZ
Affiliation:
Escuela de Agronomía, Universidad Católica de Temuco, Temuco,Chile Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Temuco, Chile
M. TONEATTI
Affiliation:
Escuela de Agronomía, Universidad Católica de Temuco, Temuco,Chile
J. FRANCE
Affiliation:
Department of Animal and Poultry Science, Centre for Nutrition Modelling, University of Guelph, Guelph, ON N1G 2W1, Canada
J. DIJKSTRA
Affiliation:
Animal Nutrition Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
E. KEBREAB
Affiliation:
Department of Animal Science, University of California Davis, Davis, CA, USA
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

A mechanistic model (COWPOLL) was used to estimate enteric methane (CH4) emissions from beef production systems in Chile. The results expressed as a proportion of gross energy intake (GEI) were compared with enteric fermentation data reported in the last Chilean greenhouse gases inventory, which utilized an earlier the Intergovernmental Panel on Climate Change Tier 2 approach. The simulation analysis was based on information from feedstuffs, dry matter intake (DMI), body weight (BW) and average daily gain (ADG) of steers raised and finished at two research facilities located in Central and Southern Chile, as well as three simulated scenarios for grass-based finishing systems in Southern Chile. Data for feedlot production systems in the central region were assessed by considering steers fed a forage : concentrate ratio of 23 : 77 using maize silage and wheat straw as roughage sources during the stages of backgrounding and fattening. Average DMI were 7·3±0·62 and 9·2±0·55 kg/day per steer for backgrounding and fattening, respectively, whereas ADG were 1·1±0·22 and 1·3±0·37 kg/day for backgrounding and fattening. For the Southern Chilean fattening production systems, the forage : concentrate ratio was 56 : 44 with ryegrass pasture as the sole forage source. In this case, average DMI was 9·97±0·51 and ADG was 1·1±0·24 kg/day per steer. Two of the grass-based scenarios used the same initial BW information as that used for the Central and Southern Chilean systems, but feedlot diets were replaced by ryegrass pasture. The third grass-based scenario used an initial BW of 390 kg. In all the grass-based scenarios an ADG of 0·90 kg/day, with maximum DMI estimated as a proportion of BW (0·01 of NDF, kg/kg BW), was assumed. The results of the simulation analysis showed that emission factors (Ym; fraction of GEI) ranged from 0·062 to 0·079 of GEI. Smaller values were associated with finishing systems that included a lower proportion of forage in the diet due to higher propionate production, which serves as a sink for hydrogen in the rumen. Cattle finished in feedlot systems had an average of 0·062 of GEI lost as CH4, whereas grass-based cattle had losses of 0·079 of GEI. Enteric CH4 emissions for the systems using grass-based and concentrate diets were 261 and 159 g/kg weight gain, respectively. The Chilean CH4 inventory employs a fixed Ym of 0·060 to estimate enteric fermentation for all cattle. This value is lower than the average Ym obtained in the current simulation analysis (0·071 of GEI), which results in underestimation of enteric CH4 emissions from beef cattle. However, these results need to be checked against field measurements of CH4 emissions. Implementation of mechanistic models in the preparation of national greenhouse gas inventories is feasible if appropriate information is provided, allowing dietary characteristics and regional particularities to be taken into consideration.

Type
Modelling Animal Systems Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alemu, A., Dijkstra, J., Bannink, A., France, J. & Kebreab, E. (2011). Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Animal Feed Science and Technology 166–167, 761778.Google Scholar
Anrique, R., Fuchslocher, R., Iraira, S. & Saldaña, R. (2010). Composición de Alimentos para el Ganado Bovino. Valdivia, Chile: Imprenta América.Google Scholar
Appuhamy, J. A. D. R., Strathe, A. B., Jayasundara, S., Wagner-Riddle, C., Dijkstra, J., France, J. & Kebreab, E. (2013). Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. Journal of Dairy Science 96, 51615173.Google Scholar
Archimède, H., Eugène, M., Marie Magdeleine, C., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. (2011). Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology 166–167, 5964.Google Scholar
Bannink, A., Kogut, J., Dijkstra, J., France, J., Tamminga, S. & Van Vuuren, A. M. (2000). Modelling production and portal appearance of volatile fatty acids in cows. In Modelling Nutrient Utilisation in Farm Animals (Eds McNamara, J. P., France, J. & Beever, D. E.), pp. 87102. Wallingford, UK: CAB International.Google Scholar
Bannink, A., Smits, M. C. J., Kebreab, E., Mills, J. A. N., Ellis, J. L., Klop, A., France, J. & Dijkstra, J. (2010). Simulating the effects of grassland management and grass ensiling on methane emission from lactating cows. Journal of Agricultural Science, Cambridge 148, 5572.Google Scholar
Bannink, A., Van Schijndel, M. W. & Dijkstra, J. (2011). A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Animal Feed Science and Technology 166–167, 603618.Google Scholar
Beauchemin, K. A. & McGinn, S. M. (2005). Methane emissions from feedlot cattle fed barley or corn diets. Journal of Animal Science 83, 653661.Google Scholar
Beauchemin, K. A. & McGinn, S. M. (2006). Enteric methane emissions from growing beef cattle as affected by diet and level of intake. Canadian Journal of Animal Science 86, 401408.Google Scholar
Beauchemin, K. A., Kreuzer, M., O'mara, F. & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48, 2127.Google Scholar
Benchaar, C., Rivest, J., Pomar, C. & Chiquette, J. (1998). Prediction of methane production from dairy cows using existing mechanistic models and regression equations. Journal of Animal Science 76, 617627.Google Scholar
Benchaar, C., Pomar, C. & Chiquette, J. (2001). Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Canadian Journal of Animal Science 81, 563574.Google Scholar
Boadi, D. A., Wittenberg, K. M. & McCaughey, W. P. (2002). Effects of grain supplementation on methane production of grazing steers using the sulphur (SF6) tracer gas technique. Canadian Journal of Animal Science 82, 151157.CrossRefGoogle Scholar
Buddle, B. M., Denis, M., Attwood, G. T., Altermann, E., Janssen, P. H., Ronimus, R. S., Pinares-Patino, C. S., Muetzel, S. & Wedlock, D. N. (2011). Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Veterinary Journal 188, 1117.Google Scholar
CEPAL (2009). Cambio Climático y Desarrollo en América Latina y el Caribe: una Reseña. Santiago, Chile: Naciones Unidas.Google Scholar
Claro, D. & González, M. (2005). Producción de carne bovina en la zona central. In Producción y Manejo de Carne Bovina en Chile (Ed. Catrileo, A. S.), pp. 323349. Temuco, Chile: Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura.Google Scholar
De Klein, C. A. M., Pinares-Patino, C. & Waghorn, G. C. (2008). Greenhouse gas emissions. In Environmental Impacts of Pasture-based Farming (Ed. McDowell, R. W.), pp. 132. Wallingford, UK: CAB International.Google Scholar
DeRamus, H. A., Clement, T. C., Giampola, D. D. & Dickison, P. C. (2003). Methane emissions of beef cattle on forages: efficiency of grazing management systems. Journal of Environmental Quality 32, 269277.Google ScholarPubMed
Dijkstra, J., Neal, H. D. S. C., Beever, D. E. & France, J. (1992). Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.Google Scholar
Ellis, J. L., Dijkstra, J., Kebreab, E., Bannink, A., Odongo, N. E., McBride, B. W. & France, J. (2008). Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. Journal of Agricultural Science, Cambridge 146, 213233.Google Scholar
Ellis, J. L., Bannink, A., France, J., Kebreab, E. & Dijkstra, J. (2010). Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Global Change Biology 16, 32463256.Google Scholar
Ellis, J. L., Dijkstra, J., Bannink, A., Kebreab, E., Hook, S. E., Archibeque, S. & France, J. (2012). Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain fed beef cattle. Journal of Animal Science 90, 27172726.Google Scholar
Goic, L. & Iraira, S. (2005). Recría – Engorda en Pastoreo. In Producción y Manejo de Carne Bovina en Chile (Ed. Catrileo, A. S.), pp. 275293. Temuco, Chile: Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura.Google Scholar
González, S. (2009). Inventarios Anuales de Gases de Efecto Invernadero de Chile: Serie Temporal 1984–2003 Para Sectores No-Energía. Santiago, Chile: Instituto de Investigaciones Agropecuarias INIA.Google Scholar
Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGinn, S. M., Waghorn, G. C. & Eckard, R. J. (2009). Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science 89, 241251.Google Scholar
Harper, L. A., Denmead, O. T., Freney, J. R. & Byers, F. M. (1999). Direct measurements of methane emissions from grazing and feedlot cattle. Journal of Animal Science 77, 13921401.Google Scholar
Hess, H. D., Tiemann, T. T., Noto, F., Carulla, J. E. & Kreuzer, M. (2006). Strategic use of tannins as means to limit methane emission from ruminant livestock. International Congress Series 1293, 164167.Google Scholar
IPCC (1996). Agriculture. In Revised 1996 IPCC Guidelines for National Greenhouse Inventories. Vol. 3: The Reference Manural (Eds Houghton, J. T., Meira Filho, L. G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D. J. & Callander, B. A.), pp. 4.14.20. Paris: OECD/OCDE.Google Scholar
IPCC (2006). Emissions from livestock and manure management. In Guidelines for National Greenhouse Gas Inventories. Vol. 4: Agriculture, Forestry and Other Land Use (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.), pp. 10.0110.89. Hayama: IGES.Google Scholar
Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science 73, 24832492.Google Scholar
Jones, F. M., Phillips, F. A., Naylor, T. & Mercer, N. B. (2011). Methane emissions from grazing Angus beef cows selected for divergent residual feed intake. Animal Feed Science and Technology 166–167, 302307.Google Scholar
Kebreab, E., France, J., McBride, B. W., Odongo, N. E., Bannink, A., Mills, J. A. N. & Dijkstra, J. (2006). Evaluation of models to predict methane emissions from enteric fermentation in North American dairy cattle. In Nutrient Utilization in Farm Animals: Modelling Approaches (Eds Kebreab, E., Dijkstra, J., Gerrits, W. J. J., Bannink, A. & France, J.), pp. 299313. Wallingford, UK: CABI International.Google Scholar
Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D. & Wirth, T. (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle. Journal of Animal Science 86, 27382748.Google Scholar
Linneberg, D., Rojas, G. & Balbontín, R. (2011). Desde el Desafío Climático Hacia los Negocios del Futuro. Oportunidades para Chile de una Economía Baja en CO2 . Santiago: Centro de Economía Sustentable y Cambio Climático de la Facultad de Economía de la Universidad de Chile.Google Scholar
McGeough, E. J., O'Kiely, P., Foley, P. A., Hart, K. J., Boland, T. M. & Kenny, D. A. (2010 a). Methane emissions, feed intake, and performance of finishing beef cattle offered maize silages harvested at 4 different stages of maturity. Journal of Animal Science 88, 14791491.Google Scholar
McGeough, E. J., O'Kiely, P., Hart, K. J., Moloney, A. P., Boland, T. M. & Kenny, D. A. (2010 b). Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content. Journal of Animal Science 88, 27032716.Google Scholar
McGinn, S. M., Beauchemin, K. A., Coates, T. & Colombatto, D. (2004). Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science 82, 33463356.Google Scholar
Mills, J. A. N., Dijkstra, J., Bannink, A., Cammell, S. B., Kebreab, E. & France, J. (2001). A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application. Journal of Animal Science 79, 15841597.Google Scholar
MMA (2011). Chile's Second National Communication to the United Nations Framework Convention on Climate Change (FCCC). Executive Summary. Santiago, Chile: MMA. Available from: http://unfccc.int/resource/docs/natc/chinc2e.pdf (accessed 3 February 2014).Google Scholar
OECD/FAO (2011). OECD-FAO Agricultural Outlook 2010–2020. Paris, France: OECD.Google Scholar
Ominski, K. H., Boadi, D. A. & Wittenberg, K. M. (2006). Enteric methane emissions from backgrounded cattle consuming all-forage diets. Canadian Journal of Animal Science 86, 393400.CrossRefGoogle Scholar
Pavao-Zuckerman, M. A., Waller, J. C., Ingle, T. & Fribourg, H. A. (1999). Methane emissions of beef cattle grazing tall fescue pastures at three levels of endophyte infestation. Journal of Environmental Quality 28, 19631969.Google Scholar
Puchala, R., Min, B. R., Goetsch, A. L. & Sahlu, T. (2005). The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science 83, 182186.Google Scholar
Quinn, M. J., May, M. L., Di Lorenzo, N., Ponce, C. H., Smith, D. R., Parr, S. L. & Galyean, M. L. (2011). Effects of roughage source and distillers grain concentration on beef cattle finishing performance, carcass characteristics, and in vitro fermentation. Journal of Animal Science 89, 26312642.Google Scholar
Riquelme, C. & Pulido, R. (2008). Efecto del nivel de suplementación con concentrado sobre el consumo voluntario y comportamiento ingestivo en vacas lecheras a pastoreo primaveral. Archivos de Medicina Veterinaria 40, 243249.Google Scholar
Rojas, C. & Catrileo, A. S. (2005). Engorda a corral en la zona sur. In Producción y Manejo de Carne Bovina en Chile (Ed. Catrileo, A. S.), pp. 295322. Temuco, Chile: Instituto de Investigaciones Agropecuarias. Ministerio de Agricultura.Google Scholar
Toro, P., Catrileo, A. S., Aguilar, C. G. & Vera, R. I. (2009). Modelling supplementation strategies for beef steers rearing and fattening systems in southern Chile. Chilean Journal of Agriculture Research 69, 207213.Google Scholar
UNFCCC (1992). United Nations Framework Convention on Climate Change. Bonn, Germany: UNFCCC. Available from: http://unfccc.int/essential_background/convention/background/items/1350.php (accessed 3 February 2014).Google Scholar
Waghorn, G. C. & Hegarty, R. S. (2011). Lowering ruminant methane emissions through improved feed conversion efficiency. Animal Feed Science and Technology 166–167, 291301.Google Scholar