Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T23:49:57.821Z Has data issue: false hasContentIssue false

Ensiled Moringa oleifera: an antioxidant-rich feed that improves dairy cattle performance

Published online by Cambridge University Press:  04 July 2017

M. COHEN-ZINDER*
Affiliation:
Department of Ruminant Science, Beef Cattle Section, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
Z. WEINBERG
Affiliation:
Forage Preservation and By-Products Research Unit, Agricultural Research Organization, 50250 Bet Dagan, Israel
H. LEIBOVICH
Affiliation:
Research and Development Haemek, P.O. Box 73, Migdal Haemek 2310001, Israel
Y. CHEN
Affiliation:
Forage Preservation and By-Products Research Unit, Agricultural Research Organization, 50250 Bet Dagan, Israel
M. ROSEN
Affiliation:
Ministry of Agriculture, Extension Service, Department of Cattle Husbandry, P.O. Box 28 Bet-Dagan 50250, Israel, Decreased
G. SAGI
Affiliation:
Eden Research Farm, Beit-Shean Valley, Israel
A. ORLOV
Affiliation:
Department of Ruminant Science, Beef Cattle Section, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
R. AGMON
Affiliation:
Department of Ruminant Science, Beef Cattle Section, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
M. YISHAY
Affiliation:
Department of Ruminant Science, Beef Cattle Section, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
J. MIRON
Affiliation:
Department of Ruminant Science, Agricultural Research Organization, P.O. Box 6, Bet Dagan 50250, Israel
A. SHABTAY*
Affiliation:
Department of Ruminant Science, Beef Cattle Section, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
*
*To whom all correspondence should be addressed. Email: [email protected] and [email protected]
*To whom all correspondence should be addressed. Email: [email protected] and [email protected]

Summary

Moringa oleifera is a rich source of antioxidants and a promising feed for livestock, due to significant amounts of protein, vitamins, carotenoids and polyphenols, and negligible amounts of anti-nutritional factors. The current study tested whether ensiling would preserve the antioxidant capacity of M. oleifera plants, and assessed whether Moringa silage, fed as a substitute for maize silage, would confer health-promoting traits and affect milk production in dairy cows. To this end, hand-harvested M. oleifera plants were ensiled, with or without molasses and inoculants, in anaerobic jars at room temperature (25 °C) for 37 days. At the end of the storage period the silages were analysed for pH, lactic acid and acetic acid concentrations, aerobic stability, antioxidant capacity, polyphenols and protein content, and tocopherols and carotenoids concentrations. Moringa silages exhibited higher antioxidant capacity compared with fresh and dried Moringa plants, not related to polyphenol content but presumably attributed to accumulation of amino acids and low molecular weight peptides. Based on these findings, a large-scale ensiling protocol was implemented, followed by a feeding trial for dairy cows, in which Moringa silage replaced 263 g maize silage/kg in the diet. Cows fed Moringa silage had higher milk yield and antioxidant capacity and lower milk somatic cell counts compared with controls, during some stages of lactation. These findings imply that ensiling M. oleifera is an appropriate practice by which health and production of dairy cows can be improved.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alia, , Mohanty, P. & Matysik, J. (2001). Effect of proline on the production of singlet oxygen. Amino Acids 21, 195200.Google ScholarPubMed
Amira, G., Ifat, MG., Tal, A., Hana, B., Shmuel, G. & Rachel, A. (2005). Soluble methionine enhances accumulation of a 15 kDa zein, a methionine-rich storage protein, in transgenic alfalfa but not in transgenic tobacco plants. Journal of Experimental Botany 56, 24432452.CrossRefGoogle Scholar
Ashbell, G., Weinberg, Z. G., Azrieli, A., Hen, Y. & Horev, B. (1991). A simple system to study the aerobic deterioration of silages. Canadian Agricultural Engineering 33, 391394.Google Scholar
Barbano, D. M., Rasmussen, R. R. & Lynch, J. M. (1991). Influence of milk somatic cell count and milk age on cheese yield. Journal of Dairy Science 74, 369388.CrossRefGoogle Scholar
Chen, H. M., Muramoto, K. & Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean b-conglycinin. Journal of Agricultural and Food Chemistry 43, 574578.CrossRefGoogle Scholar
Chirase, N. K., Greene, L. W., Purdy, C. W., Loan, R. W., Auvermann, B. W., Parker, D. B., Walborg, E. F. Jr., Stevenson, D. E., Xu, Y. & Klaunig, J. E. (2004). Effect of transport stress on respiratory disease, serum antioxidant status, and serum concentrations of lipid peroxidation biomarkers in beef cattle. American Journal of Veterinary Research 65, 860864.CrossRefGoogle ScholarPubMed
Cohen-Zinder, M., Leibovich, H., Vaknin, Y., Sagi, G., Shabtay, A., Ben-Meir, Y., Nikbachat, M., Portnik, Y., Yishay, M. & Miron, J. (2016). Effect of feeding lactating cows with ensiled mixture of Moringa oleifera, wheat hay and molasses, on digestibility and efficiency of milk production. Animal Feed Science and Technology 211, 7583.CrossRefGoogle Scholar
Duke, J. A. (1983). Handbook of Energy Crops (Moringa oleifera). West Lafayette, IN: Center for New Crop and Plant Products, Purdue University.Google Scholar
Fang, Y. Z., Yang, S. & Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition 18, 872879.CrossRefGoogle ScholarPubMed
Foidl, N., Makkar, H. P. S. & Becker, K. (2001). Potential of Moringa oleifera for agricultural and industrial uses. In The Miracle Tree. The Multiple Attributes of Moringa (Ed. Fuglie, L. G.), pp. 4576. Dakar, Senegal: Church World Service.Google Scholar
Ginsburg, I., Sadovnic, M., Oron, M. & Kohen, R. (2004). Novel chemiluminescence-inducing cocktail I. The role in light emission of combinations of luminal, with SIN-1 selenite, glucose oxidase and Co2+ . Inflammopharmacology 12, 289303.CrossRefGoogle ScholarPubMed
Gorelik, S., Lapidot, T., Shaham, I., Granit, R., Ligumsky, M., Kohen, R. & Kanner, J. (2005). Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: health implications. Journal of Agricultural and Food Chemistry 53, 33973402.CrossRefGoogle ScholarPubMed
Granit, R., Angel, S., Akiri, B., Holzer, Z., Aharoni, Y., Orlov, A. & Kanner, J. (2001). Effects of vitamin E supplementation on lipid peroxidation and color retention of salted calf muscle from a diet rich in polyunsaturated fatty acids. Journal of Agricultural and Food Chemistry 49, 59515956.CrossRefGoogle Scholar
Grubbs, J. K., Fritchen, A. N., Huff-Lonergan, E., Dekkers, J. C. M., Gabler, N. K. & Lonergan, S. M. (2013). Divergent genetic selection for residual feed intake impacts mitochondria reactive oxygen species production in pigs. Journal of Animal Science 91, 21332140.CrossRefGoogle ScholarPubMed
Hare, P. D. & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation 21, 79102.CrossRefGoogle Scholar
Hays, V. S., Gill, D. R., Smith, R. A. & Ball, R. L. (1978). The Effect of Vitamin E Supplementation on Performance of Newly Received Stocker Cattle. Animal Science Research Report, MP-199. Stillwater, OK: Oklahoma Agriculture Experiment Station, Oklahoma State University.Google Scholar
Kaul, S., Sharma, S. S. & Mehta, I. K. (2008). Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34, 315320.CrossRefGoogle ScholarPubMed
Kerem, Z., Chetrit, D., Shoseyov, O. & Regev-Shoshani, G. (2006). Protection of lipids from oxidation by epicatechin, trans-resveratrol, and gallic and caffeic acids in intestinal model systems. Journal of Agricultural and Food Chemistry 54, 1028810293.CrossRefGoogle ScholarPubMed
Kholif, A. E., Gouda, G. A., Morsy, T. A., Salem, A. Z. M., Lopez, S. & Kholif, A. M. (2015). Moringa oleifera leaf meal as a protein source in lactating goat's diets: feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Ruminant Research 129, 129137.CrossRefGoogle Scholar
Kishor, P. B. K., Hong, Z., Miao, G. H., Hu, C. A. A. & Verma, D. P. S. (1995). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology 108, 13871394.CrossRefGoogle Scholar
Lako, J., Trenerry, V. C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S. & Premier, R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chemistry 101, 17271741.CrossRefGoogle Scholar
Lavelle, C. L., Hunt, M. C. & Kropf, D. H. (1995). Display life and internal cooked color of ground beef from vitamin E-supplemented steers. Journal of Food Science 60, 11751178.CrossRefGoogle Scholar
Layne, E. (1957). Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology 73, 447454.CrossRefGoogle Scholar
Ma, Y., Ryan, C., Barbano, D. M., Galton, D. M., Rudan, M. A. & Boor, K. J. (2000). Effects of somatic cell count on quality and shelf-life of pasteurized fluid milk. Journal of Dairy Science 83, 264274.CrossRefGoogle ScholarPubMed
Makkar, H. P. S. & Becker, K. (1996). Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Animal Feed Science and Technology 63, 211228.CrossRefGoogle Scholar
Mehta, S. K. & Gaur, J. P. (1999). Heavy metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris . New Phytologist 143, 253259.CrossRefGoogle Scholar
Mendieta-Araica, B., Spörndly, E., Reyes-Sánchez, N., Norell, L. & Spörndly, R. (2009). Silage quality when Moringa olifeira is ensiled in mixtures with Elephant grass, sugar cane and molasses. Grass and Forage Science 64, 364373.CrossRefGoogle Scholar
Mendieta-Araica, B., Spörndly, R., Reyes-Sánchez, N. & Spörndly, E. (2011 a). Moringa (Moringa oleifera) leaf meal as a source of protein in locally produced concentrates for dairy cows fed low protein diets in tropical areas. Livestock Science 137, 1017.CrossRefGoogle Scholar
Mendieta-Araica, B., Spörndly, E., Reyes-Sánchez, N. & Spörndly, R. (2011 b). Feeding Moringa oleifera fresh or ensiled to dairy cows – effects on milk yield and milk flavor. Tropical Animal Health and Production 43, 10391047.CrossRefGoogle ScholarPubMed
Miller, J. K., Brzezinska-Slebodzinska, E. & Madsen, F. C. (1993). Oxidative stress, antioxidants, and animal function. Journal of Dairy Science 76, 28122823.CrossRefGoogle ScholarPubMed
Moyo, B., Masika, P. J. & Muchenje, V. (2012). Effect of supplementing crossbred Xhosa lop-eared goat castrates with Moringa oleifera leaves on growth performance, carcass and non-carcass characteristics. Tropical Animal Health and Production 44, 801809.CrossRefGoogle ScholarPubMed
Qwele, K., Hugo, A., Oyedemi, S. O., Moyo, B., Masika, P. J. & Muchenje, V. (2013). Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Science 93, 455462.CrossRefGoogle ScholarPubMed
Reyes-Sanchez, N., Spörndly, E. & Ledin, I. (2006). Effects of feeding different levels of foliage from Moringa oleifera to creole dairy cows on intake, digestibility, milk production and composition. Livestock Science 101, 2431.CrossRefGoogle Scholar
Sánchez-Machado, D. I., López-Cervantes, J. & Ríos Vázquez, N. J. (2006). High-performance liquid chromatography method to measure α- and γ-tocopherol in leaves, flowers and fresh beans from Moringa oleifera . Journal of Chromatography A 1105, 111114.CrossRefGoogle ScholarPubMed
Schukken, Y. H., Wilson, D. J., Welcome, F., Garrison-Tikofsky, L. & Gonzalez, R. N. (2003). Monitoring udder health and milk quality using somatic cell counts. Veterinary Research 34, 579596.CrossRefGoogle ScholarPubMed
Shaani, Y., Eliyahu, D., Mizrahi, I., Yosef, E., Ben-Meir, Y., Nikbachat, M., Solomon, R., Mabjeesh, S. J. & Miron, J. (2015). Effect of feeding ensiled mixture of pomegranate pulp and drier feeds on digestibility and milk performance in dairy cows. Journal of Dairy Research 83, 3541.CrossRefGoogle ScholarPubMed
Shabtay, A., Eitam, H., Tadmor, Y., Orlov, A., Meir, A., Weinberg, P., Weinberg, Z. G., Chen, Y., Brosh, A., Izhaki, I. & Kerem, Z. (2008). Nutritive and antioxidative potential of fresh and stored pomegranate industrial byproduct as a novel beef cattle feed. Journal of Agricultural and Food Chemistry 56, 1006310070.CrossRefGoogle ScholarPubMed
Siddhuraju, P. & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of Drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry 51, 21442155.CrossRefGoogle ScholarPubMed
Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent. Methods in Enzymology 299, 152178.CrossRefGoogle Scholar
Siripornadulsi, S., Traina, S., Verma, D. P. S. & Sayre, R. T. (2002). Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14, 28372847.CrossRefGoogle Scholar
Smirnoff, N. & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 10571060.CrossRefGoogle Scholar
Stahl, W. & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta 1740, 101107.CrossRefGoogle ScholarPubMed
Tadmor, Y., King, S., Levi, A., Davis, A., Meir, A., Wasserman, B. J., Hirschberg, J. & Lewinsohn, E. (2005). Comparative fruit coloration in watermelon and tomato. Food Research International Journal 38, 837841.CrossRefGoogle Scholar
Tumer, T. B., Rojas-Silva, P., Poulev, A., Raskin, I. & Waterman, C. (2015). Direct and indirect antioxidant activity of polyphenol. Journal of Agricultural and Food Chemistry 63, 15051513.CrossRefGoogle ScholarPubMed
Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M. & Amir, R. (2007). Antioxidant activity, polyphenol content and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry 55, 95599570.CrossRefGoogle ScholarPubMed
Van Poppel, G. (1996). Epidemiological evidence for b-carotene in prevention of cancer and cardiovascular disease. European Journal of Clinical Nutrition 50, S57S61.Google Scholar
Verma, A. R., Vijayakumar, M., Mathela, C. S. & Rao, C. V. (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology 47, 2196–2110.CrossRefGoogle ScholarPubMed
Weinberg, Z. G., Chen, Y. & Weinberg, P. (2008). Ensiling olive cake with and without molasses for ruminant feeding. Bioresource Technology 99, 15261529.CrossRefGoogle ScholarPubMed
Weinberg, Z. G., Khanal, P., Yildiz, C., Chen, Y. & Arieli, A. (2010). Effects of stage of maturity at harvest, wilting and LAB inoculant on aerobic stability of wheat silages. Animal Feed Science and Technology 158, 2935.CrossRefGoogle Scholar
Weinberg, Z. G., Khanal, P., Yildiz, C., Chen, Y. & Arieli, A. (2011 a). Ensiling fermentation products and aerobic stability of corn and sorghum silages. Grassland Science 57, 4650.CrossRefGoogle Scholar
Weinberg, Z. G., Chen, Y., Miron, D., Raviv, Y., Nahim, E., Bloch, A., Yosef, E., Nikbahat, M. & Miron, J. (2011 b). Preservation of total mixed rations for dairy cows in bales wrapped with polyethylene stretch film – a commercial scale experiment. Animal Feed Science and Technology 164, 125129.CrossRefGoogle Scholar
Weiss, W. P. (1998). Requirements of fat-soluble vitamins for dairy cows: a review. Journal of Dairy Science 81, 24932501.CrossRefGoogle ScholarPubMed
Weyl-Feinstein, S., Markovics, A., Eitam, H., Orlov, A., Yishay, M., Agmon, R., Miron, J., Izhaki, I. & Shabtay, A. (2014). Short communication: effect of pomegranate-residue supplement on Cryptosporidium parvum oocyst shedding in neonatal calves. Journal of Dairy Science 97, 58005805.CrossRefGoogle ScholarPubMed
Wu, H.-C., Chen, H.-M. & Shiau, C.-Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International 36, 949957.CrossRefGoogle Scholar