Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T05:45:23.044Z Has data issue: false hasContentIssue false

Efficiency of marker-assisted selection for ascochyta blight in chickpea

Published online by Cambridge University Press:  16 December 2013

P. CASTRO*
Affiliation:
Área de Mejora y Biotecnología, IFAPA, Centro ‘Alameda del Obispo’, Apdo. 3092, 14080 Córdoba, Spain
J. RUBIO
Affiliation:
Área de Mejora y Biotecnología, IFAPA, Centro ‘Alameda del Obispo’, Apdo. 3092, 14080 Córdoba, Spain
E. MADRID
Affiliation:
Institute for Sustainable Agriculture, CSIC, 4084, E-14080 Córdoba, Spain
M. D. FERNÁNDEZ-ROMERO
Affiliation:
Área de Mejora y Biotecnología, IFAPA, Centro ‘Alameda del Obispo’, Apdo. 3092, 14080 Córdoba, Spain
T. MILLÁN
Affiliation:
Dpto de Genética, Universidad de Córdoba, Campus de Rabanales Edificio C5 2aplanta, 14071 Córdoba, Spain
J. GIL
Affiliation:
Dpto de Genética, Universidad de Córdoba, Campus de Rabanales Edificio C5 2aplanta, 14071 Córdoba, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The extent to which markers have been used in chickpea breeding programmes has not been clearly determined. In the current study, phenotypic and marker-assisted selection (MAS) were employed to select blight resistant genotypes, comparing the effectiveness of both methods. The phenotypic evaluation showed that the resistance could be recessive in the material employed. However, the high distorted segregation towards the susceptible parent detected on linkage group four (LG4) could also explain the phenotype distribution of resistance. Phenotypic selection in F2:4 and F2:5 generations lead to an increase in the frequency of the allele associated with the resistance of the markers CaETR and GAA47, indicating the usefulness of these markers for MAS. The markers TA72 and SCY17 could be also useful for MAS but the high distorted segregation towards the susceptible parent in the region where these markers are located could explain their low effectiveness. The costs associated with phenotypic selection and MAS for ascochyta blight resistance during three cycles of selection are presented in the current study, showing that MAS was more expensive than phenotypic selection. Nevertheless, the use of markers reduced the time taken to select resistant lines. The markers analysed in the current study were useful to select genotypes resistant to ascochyta blight in chickpea breeding programmes, allowing pyramiding genes or quantitative trait loci (QTL) related to different pathotypes. It is recommended that MAS should be employed in early generations of chickpea breeding programmes for the four QTL analysed because this makes it possible to develop populations with a high frequency of the favourable alleles conferring resistance to blight.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abalo, G., Tongoona, P., Derera, J. & Edema, R. (2009). A comparative analysis of conventional and marker-assisted selection methods in breeding maize streak virus resistance in maize. Crop Science 49, 509520.Google Scholar
Anbessa, Y., Taran, B., Warkentin, T. D., Tullu, A. & Vandenberg, A. (2009). Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics 119, 757765.CrossRefGoogle ScholarPubMed
Aryamanesh, N., Nelson, M. N., Yan, G., Clarke, H. J. & Siddique, K. H. M. (2010). Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum . Euphytica 173, 307319.Google Scholar
Bhardwaj, R., Sandhu, J. S., Kaur, L., Gupta, S. K., Gaur, P. M. & Varshney, R. (2009). Genetics of ascochyta blight resistance in chickpea. Euphytica 171, 337343.CrossRefGoogle Scholar
Bouchez, A., Hospital, F., Causse, M., Gallais, A. & Charcosset, A. (2002). Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162, 19451959.CrossRefGoogle ScholarPubMed
Campbell, C. L. & Madden, L. V. (1990). Introduction to Plant Disease Epidemiology. New York: John Wiley & Sons.Google Scholar
Castro, P., Rubio, J., Cabrera, A., Millan, T. & Gil, J. (2011). A segregation distortion locus located on linkage group 4 of the chickpea genetic map. Euphytica 179, 515523.CrossRefGoogle Scholar
Charmet, G., Robert, N., Perretant, M. R., Gay, G., Sourdille, P., Groos, C., Bernard, S. & Bernard, M. (1999). Marker-assisted recurrent selection for cumulating additive and interactive QTLs in recombinant inbred lines. Theoretical and Applied Genetics 99, 11431148.CrossRefGoogle Scholar
Chen, W., Coyne, C. J., Peever, T. L. & Muehlbauer, F. J. (2004). Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei . Plant Pathology 53, 759769.CrossRefGoogle Scholar
Cho, S., Chen, W. & Muehlbauer, F. J. (2004). Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theoretical and Applied Genetics 109, 733739.CrossRefGoogle ScholarPubMed
Cobos, M. J., Rubio, J., Strange, R. N., Moreno, M. T., Gil, J. & Millan, T. (2006). A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 149, 105111.Google Scholar
Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169196.Google Scholar
Crouch, J. H. (2001). Molecular Marker-assisted Breeding: A Perspective for Small to Medium-sized Plant Breeding Companies. Asia & Pacific Seed Association Technical Report No. 30. Bangkok, Thailand: APSA.Google Scholar
Danehloueipour, N., Yan, G., Clarke, H. J. & Siddique, K. H. M. (2007). Diallel analyses reveal the genetic control of resistance to ascochyta blight in diverse chickpea and wild Cicer species. Euphytica 154, 195205.CrossRefGoogle Scholar
Dreher, K., Khairallah, M., Ribaut, J. M. & Morris, M. (2003). Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Molecular Breeding 11, 221234.Google Scholar
Fazio, G., Chung, S. M. & Staub, J. E. (2003). Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 107, 875883.CrossRefGoogle ScholarPubMed
Fehr, W. R. (1987). Principles of Cultivar Development, Vol. 1. Theory and Technique. New York: McGraw-Hill.Google Scholar
Flandez-Galvez, H., Ades, P. K., Ford, R., Pang, E. C. K. & Taylor, P. W. J. (2003). QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics 107, 12571265.Google Scholar
Hallauer, A. R. (1992). Recurrent selection in maize. In Plant Breeding Reviews, Vol. 9 (Ed. Janick, J.), pp. 115179. New York: John Wiley & Sons.Google Scholar
Hoeck, J. A., Fehr, W. R., Shoemaker, R. C., Welke, G. A., Johnson, S. L. & Cianzio, S. R. (2003). Molecular marker analysis of seed size in soybean. Crop Science 43, 6874.Google Scholar
Hospital, F., Moreau, L., Lacourdre, F., Charcosset, A. & Gallais, A. (1997). More on the efficiency of marker-assisted selection. Theoretical and Applied Genetics 95, 11811189.CrossRefGoogle Scholar
Iruela, M., Rubio, J., Barro, F., Cubero, J. I., Millán, T. & Gil, J. (2006). Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theoretical and Applied Genetics 112, 278287.CrossRefGoogle Scholar
Iruela, M., Castro, P., Rubio, J., Cubero, J. I., Jacinto, C., Millán, T. & Gil, J. (2007). Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). European Journal of Plant Pathology 119, 2937.CrossRefGoogle Scholar
Knapp, S. J. (1998). Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Science 38, 11641174.CrossRefGoogle Scholar
Kottapalli, P., Gaur, P. M., Katiyar, S. K., Crouch, J. H., Buhariwalla, H. K., Pande, S. & Gali, K. K. (2009). Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 165, 7988.CrossRefGoogle Scholar
Kuchel, H., Ye, G., Fox, R. & Jefferies, S. (2005). Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Molecular Breeding 16, 6778.Google Scholar
Lecomte, L., Duffé, P., Buret, M., Servin, B., Hospital, F. & Causse, M. (2004). Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theoretical and Applied Genetics 109, 658668.CrossRefGoogle ScholarPubMed
Lichtenzveig, J., Bonfil, D. J., Zhang, H. B., Shtienberg, D. & Abbo, S. (2006). Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theoretical and Applied Genetics 113, 13571369.CrossRefGoogle ScholarPubMed
Liu, L. F., Mu, P., Zhang, H. L., Wang, Y., Qu, Y. Y. & Li, Z. C. (2006). Marker-assisted selection and its verification for QTLs of basal root thickness and index of drought resistance in lowland rice and upland rice. Acta Agronomica Sinica 32, 189196.Google Scholar
Liu, P., Zhu, J. & Lu, Y. (2004). Marker-assisted selection in segregating generations of self-fertilizing crops. Theoretical and Applied Genetics 109, 370376.Google Scholar
Lu, H. J., Bernardo, R. & Ohm, H. W. (2003). Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers. Theoretical and Applied Genetics 106, 423427.Google Scholar
Madrid, E., Chen, W., Rajesh, P. N., Castro, P., Millan, T. & Gil, J. (2013). Allele-specific amplification for the detection of ascochyta blight resistance in chickpea. Euphytica 189, 183190.Google Scholar
Millan, T., Rubio, J., Iruela, M., Daly, K., Cubero, J. I. & Gil, J. (2003). Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Research 84, 373384.CrossRefGoogle Scholar
Moreau, L., Lemarié, S., Charcosset, A. & Gallais, A. (2000). Economic efficiency of one cycle of marker-assisted selection. Crop Science 40, 329337.CrossRefGoogle Scholar
Morris, M., Dreher, K., Ribaut, J. M. & Khairallah, M. (2003). Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Molecular Breeding 11, 235247.Google Scholar
Ragot, M. & Hoisington, D. A. (1993). Molecular markers for plant breeding: comparisons of RFLP and RAPD genotyping costs. Theoretical and Applied Genetics 86, 975984.CrossRefGoogle ScholarPubMed
Rakshit, S., Winter, P., Tekeoglu, M., Juarez Muñoz, J., Pfaff, T., Benko-Iseppon, A. M., Muehlbauer, F. J. & Kahl, G. (2003). DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132, 2330.Google Scholar
Reddy, M. V. & Singh, K. B. (1984). Evaluation of a world collection of chickpea germ plasm accessions for resistance to ascochyta blight. Plant Disease 68, 900901.CrossRefGoogle Scholar
Ribaut, J. M. & Hoisington, D. (1998). Marker-assisted selection: new tools and strategies. Trends in Plant Science 3, 236239.CrossRefGoogle Scholar
Santra, D. K., Tekeoglu, M., Ratnaparkhe, M., Kaiser, W. J. & Muehlbauer, F. J. (2000). Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Science 40, 16061612.Google Scholar
Singh, K. B. & Reddy, M. V. (1983). Inheritance of resistance to ascochyta blight in chickpea. Crop Science 23, 910.CrossRefGoogle Scholar
Singh, K. B., Hawtin, G. C., Nene, Y. L. & Reddy, M. V. (1981). Resistance in chickpeas to Ascochyta rabiei . Plant Disease 65, 586587.Google Scholar
Tar'an, B., Warkentin, T. D., Tullu, A. & Vandenberg, A. (2007). Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50, 2634.CrossRefGoogle ScholarPubMed
Tekeoglu, M., Santra, D. K., Kaiser, W. J. & Muehlbauer, F. J. (2000). Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Science 40, 12511256.CrossRefGoogle Scholar
Tekeoglu, M., Rajesh, P. N. & Muehlbauer, F. J. (2002). Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theoretical and Applied Genetics 105, 847854.Google Scholar
Thomas, W. T. B. (2003). Prospects for molecular breeding of barley. Annals of Applied Biology 142, 112.Google Scholar
Udupa, S. M. & Baum, M. (2003). Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theoretical and Applied Genetics 106, 11961202.CrossRefGoogle ScholarPubMed
Udupa, S. M., Weigand, F., Saxena, M. C. & Kahl, G. (1998). Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. Theoretical and Applied Genetics 97, 299307.CrossRefGoogle Scholar
Willcox, M. C., Khairallah, M. M., Bergvinson, D., Crossa, J., Deutsch, J. A., Edmeades, G. O., Gonzalez-de-Leon, D., Jiang, C., Jewell, D. C., Mihm, J. A., Williams, W. P. & Hoisington, D. (2002). Selection for resistance to southwestern corn borer using marker-assisted and conventional backcrossing. Crop Science 42, 15161528.Google Scholar
Young, N. D. (1999). A cautiously optimistic vision for marker-assisted breeding. Molecular Breeding 5, 505510.CrossRefGoogle Scholar
Yousef, G. G. & Juvik, J. A. (2001). Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Science 41, 645655.CrossRefGoogle Scholar