Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T18:33:02.524Z Has data issue: false hasContentIssue false

The contribution of biotechnology to improving post-harvest chilling tolerance in fruits and vegetables using heat-shock proteins

Published online by Cambridge University Press:  12 November 2013

M. S. AGHDAM*
Affiliation:
Department of Horticultural Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
L. SEVILLANO
Affiliation:
Instituto de Biología Funcional y Genómica, Universidad de Salamanca–Consejo Superior de Investigaciones Científicas (IBFG-UAL/CSIC), C/ Zacarías González no 2, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
F. B. FLORES
Affiliation:
Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, P.O. Box 164, E-30100 Espinardo-Murcia, Spain
S. BODBODAK
Affiliation:
Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Fresh fruits and vegetables have a short post-harvest life and are prone to post-harvest losses due to mechanical injury, physiological causes and decay. Low-temperature storage is widely used as post-harvest treatment applied for delaying senescence in vegetables and ornamentals and ripening in fruits, upholding their post-harvest quality. But the refrigerated storage of tropical and subtropical crop plant species provokes a set of physiological alterations known as chilling injury that negatively affect their quality and frequently renders the product not saleable. Membrane damage and reactive oxygen species (ROS) accumulation are the main adverse effects of chilling injury impact in sensitive horticultural products. The chilling injury tolerance of certain plant species is attributed to their ability to accumulate heat-shock proteins (HSP). The beneficial action of HSP in chilling tolerance is due to their chaperone activity but, besides this biological function, small HSP (sHSP) are able to function as membrane stabilizers and ROS scavengers, or synergistically with cell antioxidant systems. Also, biosynthesis of osmolytes such as raffinose and proline is under the regulation of heat-shock transcription factors (HSTF). These molecules are critical for osmotic adjustment since low temperatures also provoke a secondary osmotic stress. The use of biotechnological strategies can be envisaged, with the aim of generating engineered crop plants of horticultural interest to induce the production and action of HSP and HSTF, in order to assure the beneficial effects of these proteins in promoting chilling injury tolerance during their post-harvest refrigerated storage. In particular, induction of HSTF expression using biotechnology has significant potential and interest for reducing the impact of chilling injury on sensitive produce, avoiding the practical difficulties of applying the classic post-harvest technologies based on heat treatment.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, Y. J. & Song, N. H. (2012). A cytosolic heat shock protein expressed in carrot (Daucus carota L.) enhances cell viability under oxidative and osmotic stress conditions. HortScience 47, 143148.Google Scholar
Ahn, Y. J. & Zimmerman, J. L. (2006). Introduction of the carrot HSP17·7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro . Plant Cell and Environment 29, 95104.Google Scholar
Al-Fageeh, M. B. & Smales, C. M. (2006). Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal 397, 247259.Google Scholar
Al-Whaibi, M. H. (2011). Plant heat-shock proteins: a mini review. Journal of King Saud University – Science 23, 139150.Google Scholar
Baker, S. S., Wilhelm, K. S. & Thomashow, M. F. (1994). The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology 24, 701713.CrossRefGoogle Scholar
Banzet, N., Richaud, C., Deveaux, Y., Kazmaier, M., Gagnon, J. & Triantaphylidès, C. (1998). Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant Journal 13, 519527.Google Scholar
Bohnert, H. J. & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology 14, 8997.Google Scholar
Borges, J. C. & Ramos, C. H. (2005). Protein folding assisted by chaperones. Protein and Peptide Letters 12, 257261.Google Scholar
Boston, R. S., Viitanen, P. V. & Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Molecular Biology 32, 191222.Google Scholar
Busch, W., Wunderlich, M. & Schöffl, F. (2005). Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana . Plant Journal 41, 114.CrossRefGoogle ScholarPubMed
Catalá, R., Santos, E., Alonso, J. M., Ecker, J. R., Martínez-Zapater, J. M. & Salinas, J. (2003). Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15, 29402951.Google Scholar
Chen, Y. R., Chou, M., Ren, S. S., Chen, Y. M. & Lin, C. Y. (1988). Observations of soybean root meristematic cells in response to heat shock. Protoplasma 144, 19.Google Scholar
Chinnusamy, V., Zhu, J. K. & Sunkar, R. (2010). Gene regulation during cold stress acclimation in plants. Methods in Molecular Biology 639, 3955.Google Scholar
Craig, E. A., Weissman, J. S. & Horwich, A. L. (1994). Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78, 365372.Google Scholar
DeWald, D. B., Torabinejad, J., Jones, C. A., Shope, J. C., Cangelosi, A. R., Thompson, J. E., Prestwich, G. D. & Hama, H. (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed arabidopsis. Plant Physiology 126, 759769.Google Scholar
Dhonukshe, P., Laxalt, A. M., Goedhart, J., Gadella, T. W. J. & Munnik, T. (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 26662679.Google Scholar
Ding, C.-K., Wang, C. Y., Gross, K. C. & Smith, D. L. (2001). Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Science 161, 11531159.Google Scholar
Doherty, C. J., Van Buskirk, H. A., Myers, S. J. & Thomashow, M. F. (2009). Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21, 972984.Google Scholar
Domínguez, T., Hernández, M. L., Pennycooke, J. C., Jiménez, P., Martínez-Rivas, J. M., Sanz, C., Stockinger, E. J., Sánchez-Serrano, J. J. & Sanmartín, M. (2010). Increasing omega-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiology 153, 655665.CrossRefGoogle ScholarPubMed
Duan, M., Feng, H. L., Wang, L. Y., Li, D. & Meng, Q. W. (2012). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. Journal of Plant Physiology 169, 867877.Google Scholar
Eckey-Kaltenbach, H., Kiefer, E., Grosskopf, E., Ernst, D. & Sandermann, H. Jr (1997). Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock. Plant Molecular Biology 33, 343350.Google Scholar
Ellis, R. J. & van der Vies, S. M. (1991). Molecular chaperones. Annual Review of Biochemistry 60, 321347.Google Scholar
Fedoroff, N. (2006). Redox regulatory mechanisms in cellular stress responses. Annals of Botany 98, 289300.CrossRefGoogle ScholarPubMed
Flores, F., El Yahyaoui, F., de Billerbeck, G., Romojaro, F., Latché, A., Bouzayen, M., Pech, J-C. & Ambid, C. (2002). Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons. Journal of Experimental Botany 53, 201206.Google Scholar
Fung, R. W. M., Wang, C. Y., Smith, D. L., Gross, K. C. & Tian, M. (2004). MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L.). Plant Science 166, 711719.CrossRefGoogle Scholar
Gardiner, J. C., Harper, J. D. I., Weerakoon, N. D., Collings, D. A., Ritchie, S., Gilroy, S., Cyr, R. J. & Marc, J. (2001). A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13, 21432158.Google Scholar
Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M. & Thomashow, M. F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal 16, 433442.Google Scholar
Gilmour, S. J., Sebolt, A. M., Salazar, M. P., Everard, J. D. & Thomashow, M. F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology 124, 18541865.Google Scholar
Guo, S. J., Zhou, H. Y., Zhang, X. S., Li, X. G. & Meng, Q. W. (2007). Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. Journal of Plant Physiology 164, 126136.CrossRefGoogle ScholarPubMed
Gusev, N. B., Bogatcheva, N. V. & Marston, S. B. (2002). Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Moscow) 67, 511519.CrossRefGoogle ScholarPubMed
Hamilton, E. W. III & Heckathorn, S. A. (2001). Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiology 126, 12661274.Google Scholar
Härndahl, U., Hall, R. B., Osteryoung, K. W., Vierling, E., Bornman, J. F. & Sundby, C. (1999). The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4, 129138.Google Scholar
Hayashi, M. & Maeda, T. (2006). Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae . Journal of Biochemistry 139, 797803.Google Scholar
He, L. H., Chen, J. Y., Kuang, J. F. & Lu, W. J. (2012). Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit. Journal of the Science of Food and Agriculture 92, 19241930.CrossRefGoogle ScholarPubMed
Hernández, M. L., Padilla, M. N., Sicardo, M. D., Mancha, M. & Martínez-Rivas, J. M. (2011). Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry 72, 178187.Google Scholar
Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604611.CrossRefGoogle Scholar
Horváth, I., Multhoff, G., Sonnleitner, A. & Vígh, L. (2008). Membrane-associated stress proteins: more than simply chaperones. Biochimica et Biophysica Acta (BBA) – Biomembranes 1778, 16531664.CrossRefGoogle ScholarPubMed
Jofré, A., Molinas, M. & Pla, M. (2003). A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta 217, 813819.CrossRefGoogle ScholarPubMed
Jofuku, K. D., den Boer, B. G., Van Montagu, M. & Okamuro, J. K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 12111225.Google Scholar
Kim, H. & Ahn, Y.-J. (2009). Expression of a gene encoding the carrot HSP17·7 in Escherichia coli enhances cell viability and protein solubility under heat stress. HortScience 44, 866869.Google Scholar
Klimecka, M. & Muszyńska, G. (2007). Structure and functions of plant calcium-dependent protein kinases. Acta Biochimica Polonica 54, 219233.Google Scholar
Knight, H., Trewavas, A. J. & Knight, M. R. (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8, 489503.Google Scholar
Larkindale, J., Hall, J. D., Knight, M. R. & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138, 882897.Google Scholar
Lawrence, S. D., Cline, K. & Moore, G. A. (1997). Chromoplast development in ripening tomato fruit: identification of cDNAs for chromoplast-targeted proteins and characterization of a cDNA encoding a plastid-localized low-molecular-weight heat shock protein. Plant Molecular Biology 33, 483492.Google Scholar
Lee, B. H., Won, S. H., Lee, H. S., Miyao, M., Chung, W. I., Kim, I. J. & Jo, J. (2000). Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245, 283290.CrossRefGoogle ScholarPubMed
Lee, G. J. (1995). Assaying proteins for molecular chaperone activity. Methods in Cell Biology 50, 325334.CrossRefGoogle ScholarPubMed
Lee, K. W., Cha, J. Y., Kim, K. H., Kim, Y. G., Lee, B. H. & Lee, S. H. (2012). Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnology Letters 34, 167174.Google Scholar
Li, H.-Y., Chang, C.-S., Lu, L.-S., Liu, C.-A., Chan, M.-T. & Charng, Y.-Y. (2003). Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Botanical Bulletin of Academia Sinica 44, 129140.Google Scholar
Li, M., Ji, L., Yang, X., Meng, Q. & Guo, S. (2012). The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. Plant Cell Report 31, 19691979.CrossRefGoogle ScholarPubMed
Lin, C. Y., Roberts, J. K. & Key, J. L. (1984). Acquisition of thermotolerance in soybean seedlings : synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiology 74, 152160.Google Scholar
Lopez-Matas, M. A., Nuñez, P., Soto, A., Allona, I., Casado, R., Collada, C., Guevara, M. A., Aragoncillo, C. & Gomez, L. (2004). Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiology 134, 17081717.Google Scholar
Los, D. A. & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta – Biomembranes 1666, 142157.Google Scholar
Lubaretz, O. & zur Nieden, U. (2002). Accumulation of plant small heat-stress proteins in storage organs. Planta 215, 220228.Google Scholar
Lurie, S., Handros, A., Fallik, E. & Shapira, R. (1996). Reversible inhibition of tomato fruit gene expression at high temperature (effects on tomato fruit ripening). Plant Physiology 110, 12071214.CrossRefGoogle ScholarPubMed
Lyons, J. M. (1973). Chilling injury in plants. Annual Review of Plant Physiology 24, 445466.Google Scholar
Malik, M. K., Slovin, J. P., Hwang, C. H. & Zimmerman, J. L. (1999). Modified expression of a carrot small heat shock protein gene, hsp17·7, results in increased or decreased thermotolerancedouble dagger. Plant Journal 20, 8999.Google Scholar
Marangoni, A. G., Palma, T. & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology 7, 193217.Google Scholar
Medina-Escobar, N., Cárdenas, J., Muñoz-Blanco, J. & Caballero, J. L. (1998). Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein. Plant Molecular Biology 36, 3342.CrossRefGoogle ScholarPubMed
Mikami, K. & Murata, N. (2003). Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Progress in Lipid Research 42, 527543.Google Scholar
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405410.Google Scholar
Mittler, R. & Zilinskas, B. A. (1992). Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. Journal of Biological Chemistry 267, 2180221807.Google Scholar
Mittler, R. & Zilinskas, B. A. (1994). Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant Journal 5, 397405.Google Scholar
Møller, I. M. (2001). Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology 52, 561591.Google Scholar
Monroy, A. F. & Dhindsa, R. S. (1995). Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7, 321331.Google Scholar
Monroy, A. F., Castonguay, Y., Laberge, S., Sarhan, F., Vezina, L. P. & Dhindsa, R. S. (1993). A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiology 102, 873879.Google Scholar
Nakamoto, H. & Vigh, L. (2007). The small heat shock proteins and their clients. Cellular and Molecular Life Sciences 64, 294306.Google Scholar
Neta-Sharir, I., Isaacson, T., Lurie, S. & Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17, 18291838.CrossRefGoogle ScholarPubMed
Nishida, I. & Murata, N. (1996). Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annual Review of Plant Physiology and Plant Molecular Biology 47, 541568.Google Scholar
Nishizawa, A., Yabuta, Y. & Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology 147, 12511263.Google Scholar
Ohme-Takagi, M. & Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7, 173182.Google ScholarPubMed
Orvar, B. L., Sangwan, V., Omann, F. & Dhindsa, R. S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant Journal 23, 785794.Google Scholar
Page, D., Gouble, B., Valot, B., Bouchet, J. P., Callot, C., Kretzschmar, A., Causse, M., Renard, C. M. C. G. & Faurobert, M. (2010). Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta 232, 483500.Google Scholar
Panchuk, I. I., Volkov, R. A. & Schöffl, F. (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology 129, 838853.CrossRefGoogle ScholarPubMed
Panikulangara, T. J., Eggers-Schumacher, G., Wunderlich, M., Stransky, H. & Schöffl, F. (2004). Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiology 136, 31483158.Google Scholar
Pavez, L., Hödar, C., Olivares, F., González, M. & Cambiazo, V. (2013). Effects of postharvest treatments on gene expression in Prunus persica fruit: normal and altered ripening. Postharvest Biology and Technology 75, 125134.Google Scholar
Pongprasert, N., Sekozawa, Y., Sugaya, S. & Gemma, H. (2011). The role and mode of action of UV-C hormesis in reducing cellular oxidative stress and the consequential chilling injury of banana fruit peel. International Food Research Journal 18, 741749.Google Scholar
Pressman, E., Shaked, R. & Firon, N. (2006). Exposing pepper plants to high day temperatures prevents the adverse low night temperature symptoms. Physiologia Plantarum 126, 618626.CrossRefGoogle Scholar
Purvis, A. C. (1997). Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiologia Plantarum 100, 165170.Google Scholar
Reddy, V. S. & Reddy, A. S. (2004). Proteomics of calcium-signaling components in plants. Phytochemistry 65, 17451776.Google Scholar
Rolletschek, H., Borisjuk, L., Sánchez-García, A., Gotor, C., Romero, L. C., Martínez-Rivas, J. M. & Mancha, M. (2007). Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. Journal of Experimental Botany 58, 31713181.Google Scholar
Rozenzvieg, D., Elmaci, C., Samach, A., Lurie, S. & Porat, R. (2004). Isolation of four heat shock protein cDNAs from grapefruit peel tissue and characterization of their expression in response to heat and chilling temperature stresses. Physiologia Plantarum 121, 421428.Google Scholar
Ruelland, E., Cantrel, C., Gawer, M., Kader, J. C. & Zachowski, A. (2002). Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiology 130, 9991007.Google Scholar
Rui, H., Cao, S., Shang, H., Jin, P., Wang, K. & Zheng, Y. (2010). Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. Journal of the Science of Food and Agriculture 90, 15571561.Google Scholar
Sabehat, A., Weiss, D. & Lurie, S. (1996). The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiology 110, 531537.Google Scholar
Sabehat, A., Lurie, S. & Weiss, D. (1998 a). Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries. Plant Physiology 117, 651658.Google Scholar
Sabehat, A., Weiss, D. & Lurie, S. (1998 b). Heat-shock proteins and cross-tolerance in plants. Physiologia Plantarum 103, 437441.Google Scholar
Sala, J. M. (1998). Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits. Postharvest Biology and Technology 13, 255261.Google Scholar
Saltveit, M. E. & Hepler, P. K. (2004). Effect of heat shock on the chilling sensitivity of trichomes and petioles of African violet (Saintpaulia ionantha). Physiologia Plantarum 121, 3543.Google Scholar
Sanchez-Bel, P., Egea, I., Sanchez-Ballesta, M. T., Sevillano, L., Del Carmen Bolarin, M. & Flores, F. B. (2012). Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. Plant and Cell Physiology 53, 470484.Google Scholar
Sangwan, V., Foulds, I., Singh, J. & Dhindsa, R. S. (2001). Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant Journal 27, 112.Google Scholar
Sangwan, V., Örvar, B. L., Beyerly, J., Hirt, H. & Dhindsa, R. S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant Journal 31, 629638.CrossRefGoogle ScholarPubMed
Sato, Y., Murakami, T., Funatsuki, H., Matsuba, S., Saruyama, H. & Tanida, M. (2001). Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany 52, 145151.Google Scholar
Schöffl, F., Prändl, R. & Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiology 117, 11351141.Google Scholar
Schramm, F., Ganguli, A., Kiehlmann, E., Englich, G., Walch, D. & von Koskull-Döring, P. (2006). The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Molecular Biology 60, 759772.Google Scholar
Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F. & Flores, F. B. (2009). Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture 89, 555573.Google Scholar
Sevillano, L., Sola, M. M. & Vargas, A. M. (2010). Induction of small heat-shock proteins in mesocarp of cherimoya fruit (annona cherimola mill.) produces chilling tolerance. Journal of Food Biochemistry 34, 625638.Google Scholar
Sharom, M., Willemot, C. & Thompson, J. E. (1994). Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiology 105, 305308.Google Scholar
Sharp, R. E., Hsiao, T. C. & Silk, W. K. (1990). Growth of the maize primary root at low water potentials. II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology 93, 13371346.Google Scholar
Shewfelt, R. L. & Purvis, A. C. (1995). Toward a comprehensive model for lipid peroxidation in plant tissue disorders. HortScience 30, 213218.Google Scholar
Shu, D.-F., Wang, L.-Y., Duan, M., Deng, Y.-S. & Meng, Q.-W. (2011). Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiology and Biochemistry 49, 12281237.Google Scholar
Solanke, A. U. & Sharma, A. K. (2008). Signal transduction during cold stress in plants. Physiology and Molecular Biology of Plants 14, 6979.Google Scholar
Song, N. H. & Ahn, Y. J. (2010). DcHsp17·7, a small heat shock protein from carrot, is upregulated under cold stress and enhances cold tolerance by functioning as a molecular chaperone. HortScience 45, 469474.Google Scholar
Sorger, P. K. & Nelson, H. C. (1989). Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59, 807813.Google Scholar
Storozhenko, S., De Pauw, P., Van Montagu, M., Inzé, D. & Kushnir, S. (1998). The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiology 118, 10051014.Google Scholar
Sun, W., Van Montagu, M. & Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta – Gene Structure and Expression 1577, 19.Google Scholar
Swindell, W. R., Huebner, M. & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8, 125. doi: 10.1186/1471-2164-8-125.Google Scholar
Szabados, L. & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science 15, 8997.Google Scholar
Tang, G. Q., Novitzky, W. P., Carol Griffin, H., Huber, S. C. & Dewey, R. E. (2005). Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant Journal 44, 433446.Google Scholar
Teixeira, M. C., Carvalho, I. S. & Brodelius, M. (2010). Omega-3 fatty acid desaturase genes isolated from purslane (Portulaca oleracea L.): expression in different tissues and response to cold and wound stress. Journal of Agriculture and Food Chemistry 58, 18701877.Google Scholar
Thomashow, M. F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology 50, 571599.Google Scholar
Timperio, A. M., Egidi, M. G. & Zolla, L. (2008). Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics 71, 391411.Google Scholar
Török, Z., Goloubinoff, P., Horváth, I., Tsvetkova, N. M., Glatz, A., Balogh, G., Varvasovszki, V., Los, D. A., Vierling, E., Crowe, J. H. & Vigh, L. (2001). Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proceedings of the National Academy of Sciences United States of America 98, 30983103.Google Scholar
Tsvetkova, N. M., Horváth, I., Török, Z., Wolkers, W. F., Balogi, Z., Shigapova, N., Crowe, L. M., Tablin, F., Vierling, E., Crowe, J. H. & Vigh, L. (2002). Small heat-shock proteins regulate membrane lipid polymorphism. Proceedings of the National Academy of Sciences United States of America 99, 1350413509.Google Scholar
Ukaji, N., Kuwabara, C., Takezawa, D., Arakawa, K., Yoshida, S. & Fujikawa, S. (1999). Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiology 120, 481490.Google Scholar
Wang, L., Zhao, C. M., Wang, Y. J. & Liu, J. (2005). Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant. Journal of Plant Physiology and Molecular Biology 31, 167174.Google Scholar
Wang, L., Chen, S., Kong, W., Li, S. & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology 41, 244251.Google Scholar
Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9, 244252.Google Scholar
Waters, E. R., Lee, G. J. & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany 47, 325338.Google Scholar
Wise, R. R. & Naylor, A. W. (1987). Chilling-enhanced photooxidation evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiology 83, 278282.Google Scholar
Wu, Q. (2012). Improvement of abiotic stress tolerance and calcium-deficiency disorder resistance of tomato plants. Ph.D. Thesis, Kansas State University.Google Scholar
Wu, Q., Lin, J., Liu, J. Z., Wang, X., Lim, W., Oh, M., Park, J., Rajashekar, C. B., Whitham, S. A., Cheng, N. H., Hirschi, K. D. & Park, S. (2012). Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol Journal 10, 945955.CrossRefGoogle ScholarPubMed
Xue, Y., Peng, R., Xiong, A., Li, X., Zha, D. & Yao, Q. (2009). Yeast heat-shock protein gene HSP26 enhances freezing tolerance in Arabidopsis. Journal of Plant Physiology 166, 844850.Google Scholar
Xue, Y., Peng, R., Xiong, A., Li, X., Zha, D. & Yao, Q. (2010). Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biologia Plantarum 54, 105111.Google Scholar
Yu, C., Wang, H. S., Yang, S., Tang, X. F., Duan, M. & Meng, Q. W. (2009). Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiology and Biochemistry 47, 11021112.Google Scholar
Yun, Z., Jin, S., Ding, Y., Wang, Z., Gao, H., Pan, Z., Xu, J., Cheng, Y. & Deng, X. (2012). Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany 63, 28732893.Google Scholar
Zhang, C. & Tian, S. (2009). Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 °C. Food Chemistry 115, 405411.Google Scholar
Zhang, J., Huang, W., Pan, Q. & Liu, Y. (2005). Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biology and Technology 38, 8090.Google Scholar
Zou, J., Liu, C., Liu, A., Zou, D. & Chen, X. (2012). Overexpression of OsHsp17·0 and OsHsp23·7 enhances drought and salt tolerance in rice. Journal of Plant Physiology 169, 628635.Google Scholar