Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T02:01:36.688Z Has data issue: false hasContentIssue false

Wireless space-division-multiplexed signal discrimination device using electro-optic modulator with antenna-coupled electrodes and polarization-reversed structures

Published online by Cambridge University Press:  12 April 2012

Hiroshi Murata*
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. Phone: + 81 6 6850 6306
Ryota Miyanaka
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. Phone: + 81 6 6850 6306
Yasuyuki Okamura
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. Phone: + 81 6 6850 6306
*
Corresponding author: H. Murata Email: [email protected]

Abstract

Millimeter-wave wireless space-division-multiplexing signals were discriminated by a newly developed electro-optic modulator using an array of antenna-coupled electrodes and polarization-reversed structures of ferroelectric optical crystals. Discrimination with channel isolation over 13 dB was obtained for two 38 GHz wireless signals with an irradiation angle difference of 15° by use of a fabricated device 30 mm in length.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Seeds, A.J.; Williams, K.J.: Microwave photonics. IEEE/OSA J. Lightw. Technol., 24 (2006), 46284641.CrossRefGoogle Scholar
[2]Capmany, J.; Novak, D.: Microwave photonics combines two worlds. Nat. Photonics, 1 (2007), 319330.CrossRefGoogle Scholar
[3]Iezekiel, S.: Microwave Photonic: Device and Applications, Wiley & Sons Ltd., Wiltshire, 2009.CrossRefGoogle Scholar
[4]Bridges, W.B.; Sheehy, F.T.; Schaffner, J.H.: Wave-coupled LiNbO3 electro-optic modulator for microwave and millimeter-wave modulation. IEEE Photonics Technol. Lett., 3 (1991), 133135.CrossRefGoogle Scholar
[5]Sheehy, F.T.; Bridges, W.B.; Schaffner, J.H.: 60 GHz and 94 GHz antenna-coupled LiNbO3 electro-optic modulators. IEEE Photonics Technol. Lett., 5 (1993), 307310.CrossRefGoogle Scholar
[6]Shinada, S.; Kawanishi, T.; Izutsu, M.: A resonant type LiNbO3 optical modulator array with micro-strip antennas. IEICE Trans. Electron., E90-C (2007), 10901095.CrossRefGoogle Scholar
[7]Wijayanto, Y.N.; Murata, S.; Okamura, Y.: Novel electro-optic microwave-lightwave converters utilizing a patch antenna embedded with a narrow gap. IEICE Electron. Express, 8 (2011), 491497.CrossRefGoogle Scholar
[8]Murata, H.; Suda, N.; Okamura, Y.: Electro-optic microwave-lightwave converter using antenna-coupled electrodes and polarization-reversed structures, in The Conf. on Lasers and Electro-Optics 2008 (CLEO2008), CMP1, San Jose, USA, 2008.CrossRefGoogle Scholar
[9]Murata, H.; Suda, N.; Okamura, Y.: Electro-optic modulator using patch antenna-coupled resonant electrodes and polarization-reversed structure for radio-on-fiber systems, in The Conf. on Lasers and Electro-Optics 2009 (CLEO2009), CTuT5, Baltimore, USA, 2009.CrossRefGoogle Scholar
[10]Murata, H.; Suda, N.; Miyanaka, R.; Okamura, Y.: Electro-optic modulators utilizing patch-antenna-coupled electrodes and polarization-reversed structures, in The 2010 Asia-Pacific Microwave Photonics Conf. (APMP2010), TA3-3, Hong Kong, China, 2010.Google Scholar
[11]Yariv, A.: Quantum Electronics, 3rd ed., Chapter 14, Wiley, New York, 1989.Google Scholar
[12]Murata, H.; Morimoto, A.; Kobayashi, T.; Yamamoto, S.: Optical pulse generation by electro-optic modulation method and its application to integrated ultra-short pulse generators. IEEE J. Select. Topics Quantum Electron., 6 (2000), 13251331.CrossRefGoogle Scholar
[13]Yamada, M.; Nada, N.; Saitoh, M.; Watanabe, K.: First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett., 62 (1993), 435436.CrossRefGoogle Scholar
[14]Liu, X.; Kitamura, K.; Terabe, K.: Thermal stability of LiTaO3 domains engineered by scanning force microscopy. Appl. Phys. Lett., 89 (2006), 142906.CrossRefGoogle Scholar
[15]Tada, K.; Murai, T.; Nakabayashi, T.; Iwashima, T.; Ishikawa, T.: Fabrication of LiTaO3 optical waveguide by H+ exchange method. Jpn. J. Appl. Phys., 26 (1987), 503504.CrossRefGoogle Scholar
[16]Murata, H.; Okamura, Y.: Fabrication of proton-exchange waveguide using stoichiometric LiTaO3 for guided-wave electro-optic modulators with polarization-reversed structure. Adv. OptoElectron., 2008, (2008), Article ID 654280, 14.Google Scholar