Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T18:42:41.916Z Has data issue: false hasContentIssue false

Transient analysis of the EM field coupling to multi-conductor transmission lines using the NILT method

Published online by Cambridge University Press:  15 March 2012

Adnen Rajhi*
Affiliation:
Ecole Supérieure de Technologie et de l'Informatique, Université de Carthage, Tunisie. Phone: +216 98 915 906
Said Ghnimi
Affiliation:
Unité de recherche Circuits et Systèmes Electroniques hautes fréquences, Faculté des Sciences de Tunis, Université Elmanar, Tunisie.
Ali Gharssallah
Affiliation:
Unité de recherche Circuits et Systèmes Electroniques hautes fréquences, Faculté des Sciences de Tunis, Université Elmanar, Tunisie.
*
Corresponding author: A. Rajhi Email: [email protected]

Abstract

A simple and efficient numerical inversion Laplace transform (NILT) algorithm is implemented in MATLAB environment based on the quotient difference method to solve the problem of electromagnetic (EM) field coupling to lossy or lossless multi-conductor transmission lines (MTL) illuminated by an EM incident field. Two major points are treated in this work for the lossy MTL system excited by an incident EM field; the first one is the optimum equivalent circuit taking into consideration the different physical concepts based on the transmission line theory and the second point deals with the choice and implementation of the numerical method for less computing time and for efficient results. In this paper, the effect of the EM coupling is treated and it is based on the superposition effect of each distributed voltage current sources using the NILT numerical method. Results of the near end and far end voltages and currents for an MTL system are presented and displayed for two types of microwave (MW) structures in the time domain for the case of a plane wave excitation. It has been shown that a non-homogeneous MW structure or multilayered system with a specific choice of the dielectric constant has an advantage for less transient EM coupling due to the external EM field.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Paul, C.R.: A brief history of work in transmission lines for EMC applications. IEEE Trans. Electromagn. Compat., 49 (2007), 237252.CrossRefGoogle Scholar
[2]Nitsch, J.; Baum, C.E.; Sturm, R.: Analytical treatment of uniform multiconductor transmission lines. IEEE Trans. Electromagn. Compat., 35 (1993), 285294.Google Scholar
[3]Griffith, R.; Nakhla, M.S.: Mixed frequency/time domain analysis of non linear circuits. IEEE Trans. Comput.-Aided Des., 11 (1992), 10321043.Google Scholar
[4]Nakhla, N.M.; Douanavis, A.; Nakhla, M.S.; Achar, R.: Delay extraction based sensitivity analysis of multiconductor transmission lines with nonlinear terminations. IEEE Trans. Microw. Theory Tech., 53 (2005), 35203530.CrossRefGoogle Scholar
[5]Winkelstein, D.; Pomerleau, R.; Steer, M.B.: Transient simulation of complex lossy multiport transmission line networks with non linear digital device termination using a circuit simulator. Conf. Proc. IEEE Southeastcon, 3 (1989), 12391244.Google Scholar
[6]Basel, M.S.; Steer, M.B.; Franzon, P.D.: Simulation of high speed interconnects using a convolution based hierarchical packaging simulator. IEEE Trans. Compon. Packag. Manuf. Tech., 18 (1995), 7482.CrossRefGoogle Scholar
[7]Paul, C.R.: Literal solutions for time-domain crosstalk on lossless transmission lines. IEEE Trans. Electromagn. Compat., 34 (1992), 433444.Google Scholar
[8]Hill, D.A.; Cavcey, K.H.; Johnk, R.T.: Crosstalk between microstrip transmission lines. IEEE Trans. Electromagn. Compat., 36 (1994), 314321.CrossRefGoogle Scholar
[9]Gao, D.S.; Yang, A.T.; Mo Kang, S.: Modeling and simulation of interconnection delays and crosstalks in high-speed integrated circuits. IEEE Trans. Circuits Syst., 37 (1990), 19.CrossRefGoogle Scholar
[10]Chang, E.C.; Mo Kang, S.: Transient simulation of lossy coupled transmission lines using iterative linear least square fitting and piecewise recursive convolution. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl., 43 (1996), 923932.Google Scholar
[11]Maio, I.; Canavero, F.G.; Dilecce, B.: Analysis of crosstalk and field coupling to lossy MTL's in a SPICE environment. IEEE Trans. Electromagn. Compat., 38 (1996), 221229.Google Scholar
[12]Deutsh, A. et al. : When are transmission line effects important for on chip interconnections? IEEE Trans. Microw. MTT, 45 (1997), 18361846.Google Scholar
[13]Ismail, Y.I.; Friedman, E.G.; Neves, J.L.: Figures of merit to characterize the importance of on-chip inductance. Proc. 35th Des. Autom. Conf., 35 (1998), 560565.Google Scholar
[14]Djordjevic, A.R.; Sarkar, T.K.: Analysis of time response of lossy multiconductor transmission line networks. IEEE Trans. MTT, 35 (1987), 898908.CrossRefGoogle Scholar
[15]Brazil, T.J.: Causal convolution- a new method for the transient analysis of linear systems at microwave frequencies. IEEE Trans. MTT, 43 (1995), 315323.CrossRefGoogle Scholar
[16]Das, S.K.; Smith, W.T.: Application of asymptotic waveform evaluation for analysis of skin effect in lossy interconnects. IEEE Trans. Electromagn. Compat., 39 (1997), 138146.Google Scholar
[17]Chiprout, E.; Nakhla, M.: Fast nonlinear waveform estimation for large distributed networks. IEEE MTT-S Int. Microw. Symp. Dig., 3 (1992), 13411344.Google Scholar
[18]Celik, M.; Ocali, O.; Tan, M.A.; Atalar, A.: Pole-zero computation in microwave circuits using multipoint Pade approximation. IEEE Trans. Circuits Syst., 42 (1995), 613.CrossRefGoogle Scholar
[19]Chang, E.C.; Kang, S.-M.: Computationally efficient simulation of a lossy transmission line with skin effect by using numerical inversion of Laplace transform. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl., 39 (1992), 861868.Google Scholar
[20]Hosono, T.: Numerical inversion of Laplace transform. Trans. Inst. Elect. Eng. Japan, 99 (1979), 4349.Google Scholar
[21]Hosono, T.: Numerical inversion of Laplace transform and some application to wave optics. Radio Sci., 16 (1981), 10151019.Google Scholar
[22]Crump, K.S.: Numerical inversion of Laplace transform using Fourier series approximation. J. Assoc. Comput. Mach., 23 (1976), 8996.Google Scholar
[23]Honig, G.; Hirdles, U.: A method for the numerical inversion of Laplace transform. J. Comput. Appl. Math., 10 (1984), 113132.Google Scholar
[24]Paul, C.R.: A spice model for multiconductor transmission lines excited by an incident electromagnetic field. IEEE Trans. Electromagn. Compat., 36 (1994), 342354.Google Scholar
[25]Paul, C.R.: Frequency response of multiconductor transmission lines illuminated by an electromagnetic field. IEEE Trans. Electromagn. Compat., 18 (1976), 183190.Google Scholar
[26]Paul, C.R.: Efficient numerical computation of the frequency response of cables illuminated by an electromagnetic field. IEEE Trans. Microw. Theory Tech., 22 (1974), 454457.Google Scholar
[27]Kami, Y.; Sato, R.: Circuit-concept approach to externally excited transmission lines. IEEE Trans. Electromagn. Compat., 27 (1985), 177183.Google Scholar
[28]Erdin, I.; Dounavis, A.; Achar, R.; Nakhla, M.S.: A spice model for incident field coupling to lossy multiconductor transmission lines. IEEE Trans. Electromagn. Compat., 43 (2001), 485494.CrossRefGoogle Scholar
[29]Cangellaris, A.C.: Distributed equivalent sources for the analysis of multiconductor transmission lines excited by an electromagnetic field. IEEE Trans. Microw. Theory Tech., 36 (1988), 14451448.Google Scholar
[30]Bridges, G.E.J.; Shafa, L.: Plane wave coupling to multiple conductor transmission lines above a Lossy earth. IEEE Trans. Electromagn. Compat., 31 (1989), 2133.Google Scholar
[31]Mok, E.S.M.; Costache, G.I.: Skin-effect considerations on transient response of a transmission line excited by an electromagnetic pulse. IEEE Trans. Electromagn. Compat., 34 (1992), 320329.CrossRefGoogle Scholar
[32]Harrison, C.W. Jr: Generalized theory of impedance loaded multiconductor transmission lines in an incident field. IEEE Trans. Electromagn. Compat., 14 (1972), 5663.Google Scholar
[33]Agrawal, A.K.; Price, H.J.; Gurbaxani, S.H.: Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field. IEEE Trans. Electromagn. Compat., 22 (1980), 119129.CrossRefGoogle Scholar
[34]Bernardi, P.; Cicchetti, R.; Pirone, C.: Transient response of a microstrip line circuit excited by an external electromagnetic source. IEEE Trans. Electromagn. Compat., 34 (1992), 100108.CrossRefGoogle Scholar
[35]Das, S.K.; Smith, W.T.: Incident field coupling analysis of multiconductor transmission lines using asymptotic waveform evaluation, In Int. Symp. on Electromagnetic Compatibility, Santa Clara, CA, USA, 265270.Google Scholar
[36]Rachidi, F.: Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field. IEEE Trans. Electromagn. Compat., 35 (1993), 404407.Google Scholar
[37]Shinh, G.S.; Nakhla, N.M.; Achar, R.; Nakhla, M.S.; Dounavis, A.; Erdin, I.: Fast transient analysis of incident field coupling to multiconductor transmission lines. IEEE Trans. Electromagn. Compat., 48 (2006), 5773.Google Scholar
[38]Schutt-aina, J.E.; Mittra, R.: Nonlinear transient analysis of coupled transmission lines. IEEE Trans. Circiuits Syst., 36 (1989), 959967.CrossRefGoogle Scholar
[39]Chan, P.K.: Comments on asymptotic waveform evaluation for timing analysis. IEEE Trans. Comput.-Aided Des., 10 (1991), 10781079.CrossRefGoogle Scholar
[40]Paul, C.R.: Analysis of Multiconductor Transmission Lines, A Wiley-Interscience Publication, Hoboken, NJ, 1994.Google Scholar
[41]Rutishauser, H.: Der Quotienten-Differenzen-Algorithmus, Verlag, Basel, 1957.Google Scholar
[42]Henrici, P.: Applied and Computational Complex Analysis, vol. 2, John Wiley, New York, 1977Google Scholar
[43]Branin, F.H. Jr: Transient analysis of loosless coupled transmission line. Proc. IEEE, 55 (1967), 20122013.Google Scholar
[44]Chang, F.Y.: Transient analysis of lossless coupled transmission lines in a nonhomogeneous dielectric medium. IEEE Trans. Microw. Theory Tech., 18 (1970), 616626.Google Scholar
[45]Chang, F.Y.: Waveform relaxation analysis of nonuniform lossy transmission lines characterized with frequency dependent parameters. IEEE Trans. Circuits Syst., 38 (1991), 14841500.CrossRefGoogle Scholar
[46]Paul, C.R.: Introduction to Electromagnetic Compatibility, John Wiley, New York, 1992.Google Scholar
[47]Haiyan, Xie; Jianguo, Wang; Ruyu, Fan; Yinong, Liu: A Hybrid FDTD-SPICE Method for Transmission Lines Excited by a Nonuniform Incident Wave. IEEE Transactions on electromagnetic compatibility, 51 (2009), 811817.Google Scholar