Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T08:40:05.086Z Has data issue: false hasContentIssue false

Slot coupled patch antenna in MCM-D for millimeter wave detector matrix applications

Published online by Cambridge University Press:  30 January 2012

Vahid Tavakol*
Affiliation:
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 bus 2444, B-3001 Leuven, Belgium. Phone: +32 484885390; Fax: +32 16 321986.
Feng Qi
Affiliation:
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 bus 2444, B-3001 Leuven, Belgium. Phone: +32 484885390; Fax: +32 16 321986.
Ilja Ocket
Affiliation:
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 bus 2444, B-3001 Leuven, Belgium. Phone: +32 484885390; Fax: +32 16 321986.
Dominique Schreurs
Affiliation:
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 bus 2444, B-3001 Leuven, Belgium. Phone: +32 484885390; Fax: +32 16 321986.
Walter De Raedt
Affiliation:
Imec Belgium Kapeldreef 75, B-3001 Heverlee, Belgium.
Bart Nauwelaers
Affiliation:
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 bus 2444, B-3001 Leuven, Belgium. Phone: +32 484885390; Fax: +32 16 321986.
*
Corresponding author: V. Tavakol Email: [email protected]

Abstract

In this work we assess the feasibility of fabricating a matrix of antennas for the millimeter (mm)-wave band using the “Multi Chip Module – Deposited (MCM-D)” process. The main focus of the design is to minimize the cross coupling between the antennas fabricated on the common substrate. We investigate the use of a virtual cavity formed by metalized vias in order to reduce the cross coupling to the neighboring cells. The radiation efficiency is analyzed in detail, and experimental results of a 2 × 2 array are presented.

Type
Industrial and Engineering Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Sheen, D.M.; McMakin, D.L.; Hall, T.E.: Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech., 49 (2001), 15811592.Google Scholar
[2]Lovberg, J.A.; Martin, C.; Kolinko, Y.: Video-rate passive millimeter-wave imaging using phased arrays. In Proc. of IEEE/MTT-S Int. Microwave Symp., Honolulu, HI, June 2007, pp. 16891692.Google Scholar
[3]Ahmed, S.S.; Schiess, A.; Schmidt, L.P.: Near field mm-wave imaging with multistatic sparse 2D-arrays. In European Radar Conf., EuRAD 2009, Rome, Italy, September 30–October 2, 2009, pp. 180183.Google Scholar
[4]Posada, H.; Carchon, G.; Nauwelaers, B.; De Raedt, W.: Thin-film MCM-D technology with through-substrate vias for the integration of 3D SiP modules. In Proc. of Electronic Components and Technology Conf., Lake Buena Vista, FL, May 2008, pp. 20602066.Google Scholar
[5]Grzyb, J.; Troster, G.: mm-wave microstrip and novel slot antennas on low cost large area panel MCM-D substrates – a feasibility and performance study. IEEE Trans. Adv. Packag., 25 (3) (2002), 397408.Google Scholar
[6]Perfecto, E.D.; Shields, R.R.; Master, R.N.: A low cost MCM-D process for flip chip and wirebonding applications. In Electronic Components and Technology Conf., May 1995, pp. 10811086.Google Scholar
[7]Hettak, K.; Delisle, G.; Boulmalf, M.: A novel integrated antenna for millimeter-wave personal communications systems. IEEE Trans. Antennas Propag., AP-46 (1998), 17571758.CrossRefGoogle Scholar
[8]Verma, A.; Fumeaux, C.; Van-Tan, T.; Bates, B.D.: Effect of film thickness on the radiation efficiency of a 4.5 GHz polypyrrole conducting polymer patch antenna. In Microwave Conf. Proc. (APMC), 2010, Yokohama, Japan, December 7–10, 2010, pp. 9598.Google Scholar
[9]Sheen, J.: Losses of the parallel-plate dielectric resonator. IET Microw. Antennas Propag., 2 (3) (2008), 221228.CrossRefGoogle Scholar
[10]James, J.R.; Henderson, A.: High-frequency behaviour of microstrip open-circuit terminations. IEE J. Microw. Opt. Acoust., 3 (1979), 205218.Google Scholar
[11]Platt, D.; Pettersson, L.; Jakonis, D.; Salter, M.; Hagglund, J.: Integrated 79 GHz UWB automotive radar front-end based on hi-mission MCM-D silicon platform. In European Radar Conf., EuRAD 2009, Rome, Italy, September 30–October 2, 2009, pp. 445448.Google Scholar