Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:22:20.868Z Has data issue: false hasContentIssue false

A performance-enhanced planar Schottky diode for Terahertz applications: an electromagnetic modeling approach

Published online by Cambridge University Press:  18 September 2017

Amir Ghobadi
Affiliation:
Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
Talha Masood Khan
Affiliation:
Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
Ozan Onur Celik
Affiliation:
Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
Necmi Biyikli
Affiliation:
Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
Ali Kemal Okyay
Affiliation:
Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
Kagan Topalli*
Affiliation:
Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
*
Corresponding author: K. Topalli Email: [email protected]

Abstract

In this paper, we present the electromagnetic modeling of a performance-enhanced planar Schottky diode for applications in terahertz (THz) frequencies. We provide a systematic simulation approach for analyzing our Schottky diode based on finite element method and lumped equivalent circuit parameter extraction. Afterward, we use the developed model to investigate the effect of design parameters of the Schottky diode on parasitic capacitive and resistive elements. Based on this model, device design has been improved by deep-trench formation in the substrate and using a closed-loop junction to reduce the amount of parasitic capacitance and spreading resistance, respectively. The results indicate that cut-off frequency can be improved from 4.1 to 14.1 THz. Finally, a scaled version of the diode is designed, fabricated, and well characterized to verify the validity of this modeling approach.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics, 1 (2007), 97105.Google Scholar
[2] Maiwald, F. et al. : Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz. IEEE Microw. Guid. Wave Lett., 9 (5) (1999), 198200.Google Scholar
[3] Yang, S.-H. et al. : Tunable Terahertz wave generation through a Novel bimodal laser diode and plasmonic photomixer. Opt. Express, 23 (2015), 3120631215.Google Scholar
[4] Chattopadhyay, G. et al. : An all-solid-state broad-band frequency multiplier chain at 1500 GHz. IEEE Trans. Microw. Theory Tech., 52 (5) (2004), 15381547.Google Scholar
[5] Siles, J.V.; Grajal, J.: Physics-based design and optimization of Schottky diode frequency multipliers for Terahertz applications. IEEE Trans. Microw. Theory Tech., 58 (7) (2010), 19331942.Google Scholar
[6] Liu, L.; Hesler, J.L.; Xu, H.; Lichtenberger, A.W.; Weikleii, R.M.: A broadband quasi-optical Terahertz detector utilizing a zero bias Schottky diode. IEEE Microw. Guid. Wave Lett., 20 (9) (2010), 504506.Google Scholar
[7] Guo, J.; Xu, J.; Qian, C.: A new scheme for the design of balanced frequency tripler with Schottky diodes. Prog. Electromagn. Res., 137 (January 2012) (2013), 407424.Google Scholar
[8] Maestrini, A. et al. : Schottky diode-based Terahertz frequency multipliers and mixers. Comptes Rendus Phys., 11 (7–8) (2010), 480495.Google Scholar
[9] Rupper, G.; Rudin, S.; Shur, M.: Response of plasmonic terahertz detectors to amplitude modulated signals. Solid-State Electron., 111 (2015), 7679.Google Scholar
[10] Thomas, B. et al. : A Broadband 835–900-GHz fundamental balanced mixer based on monolithic GaAs membrane Schottky diodes. IEEE Trans. Microw. Theory Tech., 58 (7) (2010), 19171924.Google Scholar
[11] Sobis, P.J.; Wadefalk, N.; Emrich, A.; Stake, J.: A broadband, low noise, integrated 340 GHz Schottky diode receiver. IEEE Microw. Wireless Compon. Lett., 22 (7) (2012), 366368.Google Scholar
[12] Mehdi, I.; Siegel, P.H.: Effect of parasitic capacitance on the performance of planar subharmonically pumped Schottky diode mixers, in Proc. 5th Int. Symp. on Space Terahertz Technol., Ann Arbor, MI, 1994, pp. 379–393.Google Scholar
[13] Tang, A.Y.; Stake, J.: Impact of Eddy currents and crowding effects on high-frequency losses in planar Schottky diodes. IEEE Trans. Electron Devices, 58 (10) (2011), 32603269.Google Scholar
[14] Grajal, J.; Krozer, V.; González, E.; Maldonado, F.; Gismero, J.: Modeling and design aspects of millimeter-wave and submillimeter-wave Schottky diode varactor frequency multipliers. IEEE Trans. Microw. Theory Tech., 48 (4) (2000), 700711.Google Scholar
[15] Crowe, T.W.; William, L.P.; Bishop, L.; Meiburg, E.R.; Mattlauch, R.J.: A micron-thickness, planar Schottky diode chip for terahertz applications with theoretical minimum parasitic capacitance. IEEE MTT-S Microwave Symp. Digest, vol. 3, 1990, 1305–1308.Google Scholar
[16] Yoon, J. et al. :GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature, 465 (7296) (2010), 329333.Google Scholar
[17] Tang, A.Y. et al. : Analysis of the high frequency spreading resistance for surface channel planar Schottky diodes, in 35th Int. Conf. on Infrared Millimeter Terahertz Waves (IRMMW-THz), 2010, pp. 12.Google Scholar
[18] Hudait, M.; Krupanidhi, S.: Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Phys. B: Condens. Matter, 307 (1–4) (2001), 125137.CrossRefGoogle Scholar
[19] Topalli, K.; Trichopoulos, G.C.; Sertel, K.: An indirect impedance characterization method for monolithic THz antennas using coplanar probe measurements. IEEE Antennas Wireless Propag. Lett., 11 (2012), 35.Google Scholar
[20] Ghobadi, A.: A performance-enhanced planar Schottky diode for Terahertz applications: an electromagnetic modeling approach. M.S. thesis, Deprtment of Electrical Engineering, Bilkent University, Ankara, Turkey, 2014.Google Scholar
[23] Bishop, L.; Mckinney, K.; Mattauch, R. J.; Crowe, T. W.; Green, G.: A novel whiskerless diode for millimeter and submillimeter wave applications, in IEEE MTT-S Dig., 1987, pp. 607610.Google Scholar
[24] Marks, R.B.: A multiline method of network analyzer calibration. IEEE Trans. Microw. Theory Tech., 39 (7) (1991), 12051215.Google Scholar
[25] Rizzi, B.J.; Hesler, J.L.; Dossal, H.; Crowe, T.W.: Varactor diodes for millimeter and submillimeter wavelengths. Third Int. Symp. on Space Terahertz Technol., vol. 48, 2000, 7392.Google Scholar
[26] Crowe, T.W.; Member, S.; Matmuch, R.J.; Roser, H.P.; Bishop, W.L.; Liu, X.: GaAs Schottky diodes for THz mixing applications. Proc. IEEE, 80 (11) (1992), 18271841.Google Scholar
[27] Bishop, W.L.; Crowe, T.W.; Mattauch, R.J.: Planar GaAs Schottky diode fabrication: progress and challenges, in Fourth Int Symp on Space THz Tech, 1993, pp. 415429.Google Scholar
[28] Alijabbari, N.; Bauwens, M.F.; Weikle, R.M.: Design and characterization of integrated submillimeter-wave quasi-vertical Schottky diodes. IEEE Trans. Terahertz Sci. Technol., 5 (1) (2015), 7380.Google Scholar
[29] Pardo, D.; Grajal, J.; Pérez, S.: Electrical and noise modeling of GaAs Schottky diode mixers in the THz band. IEEE Trans. Terahertz Sci. Technol. 6 (1) (2016), 6982.Google Scholar
[30] Kiuru, T.: Characterization and modelling of THz Schottky diodes, in 39th Int. Conf. on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014.CrossRefGoogle Scholar