Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T08:31:25.108Z Has data issue: false hasContentIssue false

MM-wave performance and avalanche noise estimation of hexagonal SiC and GaN IMPATTs for D-band applications

Published online by Cambridge University Press:  01 May 2012

Pravash R. Tripathy*
Affiliation:
Purushottam Institute of Engineering & Technology, Rourkela, Odisha, India. Phone: +91 9437346463.
Moumita Mukherjee
Affiliation:
Centre for Millimeter-Wave Semiconductor devices and Systems (CMSDS), Institute of Radio Physics & Electronics, University of Calcutta, 1, Girish Vidyaratna Lane, Kolkata 700009, West Bengal, India.
Shankar P. Pati
Affiliation:
National Institute of Science & Technology, Berhampur, Odisha, India.
*
Corresponding author: P. R. Tripathy Email: [email protected]

Abstract

The mm-wave as well as avalanche noise properties of IMPATT diode at D-band are efficiently estimated, with different poly-types of silicon carbide (SiC) and GaN as base materials, using advanced computer simulation techniques developed by the authors. The breakdown voltage of 4H-SiC (180 V) is more than the same for 6H-SiC, ZB- and Wz-GaN-based diode of 170,158, and 160 V, respectively. Similarly, the efficiency (14.7%) is also high in the case of 4H-SiC as compared with 6H-SiC and GaN-based diode. The study indicates that 4H-SiC IMPATT diode is capable of generating high RF power of about 8.38 W as compared with GaN IMPATT diode due to high breakdown voltage and negative resistance for the same frequency of operation. It is also observed that Wz-GaN exhibits better noise behavior 7.4 × 10−16 V2 s than SiC (5.16 × 10−15 V2 s) for IMPATT operation at 140 GHz. A comparison between the power output and noise from both the device reveals that Wz-GaN would be a suitable base material for high-power application of IMPATT diode with moderate noise.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Trew, R.J.: High-frequency solid-state electronic devices. IEEE Trans. Electron Devices, 52 (5) (2005), 638649.Google Scholar
[2]Buniatyan, V.V.; Aroutiounian, V.M.: Wide gap semiconductor microwave devices. J. Phys. D, Apply. Phys., 40 (20) (2007), 63556385.Google Scholar
[3]Shur, M.S.: GaN based transistors for high power applications. Solid State Electron., 42 (12) (1998), 21312138.CrossRefGoogle Scholar
[4]Mishra, U.K.; Wu, Y.; Kellar, B.P.; Kelar, S.; Baars Den, S.P.: GaN microwave electronics. IEEE Trans. Microw. Theory Tech., MTT-46 (1999), 756761.Google Scholar
[5]Elasser, A.; Chow, T.P.: Silicon carbide benefits and advantages for power electronics circuits and systems. Proc. IEEE, 90 (6) (2002), 969986.CrossRefGoogle Scholar
[6]Casady, J.B.; Johnso, R.W.: Status of silicon carbide semiconductor for high temperature applications: a review. Solid-State Electron., 39 (10) (1996), 14091422.CrossRefGoogle Scholar
[7]Neudeck, P.G.: Progress in silicon carbide semiconductor electronics technology. J. Electron. Matter, 24 (4) (1995), 283288.Google Scholar
[8]Brandt, R.C. et al. : SiC for applications in high-power electronics, In Park, Y.S. (ed.), Semiconductors and Semimetals, vol. 52, Academic, New York, 1998, pp. 195236.Google Scholar
[9]Pattanaik, S.R.; Dash, G.N.; Mishra, J.K.: Prospects of 6H-SiC for operation as an IMPATT diode at 140 GHz. Semicond. Sci. Technol., 20 (3) (2005), 299.CrossRefGoogle Scholar
[10]Oguzman, I.H. et al. : Theory of hole initiated impact ionization in bulk zinc blende and wurtzite GaN. J. Appl. Phys., 81 (2) (1997), 78277836.CrossRefGoogle Scholar
[11]Albrecht, J.D. et al. : Electronic transport characteristics of GaN for high temperature device modelling. J. Appl. Phys., 83 (1998), 47774781.CrossRefGoogle Scholar
[12]Oguzman, I.H. et al. : Hole transport properties of bulk zinc-blende and wurtzite phases of GaN based on an ensemble Monteo Carlo calculation including a full zone band structure. J. Appl. Phys., 80 (1996), 44294436.Google Scholar
[13]Peatron, S.J.; Zolper, J.C.; Shul, R.J., Ren, F.: GaN: processing, defects, and devices. J. Appl. Phys., 86 (1999), 178.Google Scholar
[14]Peatron, S.J. et al. : Fabrication and performance of GaN electronic devices. Mater. Sci. Eng., 30 (2000), 55212.Google Scholar
[15]Tripathy, P.R.; Panda, A.K.; Pati, S.P.: Comparison between the DC and microwave performance of wurtzite phase and zinc-blende phase GaN-based Impatts, in Proc. XV Int. Workshop on the Physics of Semiconductor Devices (IWPSD-2009), Excel India Publishers, New Delhi, 2009, 525–528, ISBN: 978-93-80043-55-5.Google Scholar
[16]Loh, W.S. et al. : Impact ionization coefficients in 4H-SiC. IEEE Trans. Electron Devices, 55 (8) (2008), 19841990.CrossRefGoogle Scholar
[17]Electronic Archive: New Semiconductor Materials, Characteristics and Properties [Online]. Available: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC.Google Scholar
[18]Reklaitis, A.; Reggiani, L.: Monte Carlo study of hot-carrier transport in bulk wurtzite GaN and modeling of a near-terahertz impact avalanche transit time diode. J. Appl. Phys., 95 (12) (2004), 79257935.CrossRefGoogle Scholar
[19]Electronic Archive: New Semiconductor Materials, Characteristics and Properties [Online]. Available: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN.Google Scholar
[20]Dash, S.K.; Pati, S.P.: Effect of optical radiation on millimeter-wave characteristics and avalanche noise generation in double-drift Impatt diodes based on opto-sensitive semiconductors. Microw. Opt. Technol. Lett., 33 (4) (2002), 295300.CrossRefGoogle Scholar
[21]Mukherjee, M.; Tripathy, P.R.; Pati, S.P.: Effects of mobile space-charge on dynamic characteristics and parasitic resistance of InP terahertz IMPATT oscillator operating at elevated junction temperature. Arch. Appl. Sci. Res. (Int. J. USA), 2 (3) (2010), 4252, ISSN 0975-508X.Google Scholar
[22]Eisele, H.; Haddad, G.I.: in Sze, S.M. (ed.), Microwave Semiconductor Device Physics, Wiley, New York, 1997, p. 343.Google Scholar
[23]Pati, S.P.; Tripathy, P.R.; Dash, S.K.: Avalanche breakdown characteristics of wide band gap vis-à-vis low band gap junctions and high RF power/low noise generation in ZnS DD IMPATTs. Int. J. Pure Appl. Phys., 6 (2) (2010), 229241, ISSN 0973-1776.Google Scholar
[24]Panda, A.K.; Pavlidis, D.; Alekseev, E.: Noise characteristics of GaN-based IMPATTs. IEEE Trans. Electron Devices, 48 (2001), 14731475.CrossRefGoogle Scholar
[25]Reklaitis, A.; Reggiani, L.: Monte Carlo investigation of current voltage and avalanche noise in GaN double-drift impact diodes. J. Appl. Phys., 97 (2005), 043709.Google Scholar
[26]Scarborough, J.B.: Numerical Mathematical Analysis, The Johns Hopkins Press, Oxford IBH Publishing Co., 1969.Google Scholar
[27]Gummel, H.K.; Blue, J.L.: A small signal analysis of avalanche noise in IMPATT diodes. IEEE Trans. Electron Devices, 14 (1967), 569580.CrossRefGoogle Scholar
[28]Mukherjee, M.; Mazumder, N.; Roy, S.K.: Photosensitivity analysis of gallium nitride and silicon carbide terahertz IMPATT oscillators: comparison of theoretical reliability and study on experimental feasibility. IEEE Trans. Device Mater. Reliab., 8 (2008), 608620.CrossRefGoogle Scholar
[29]Usikov, A. et al. : Electrical and optical properties of thick, highly doped p-type GaN layers grown by HVPE. Phys. Stat. Sol. (c), 5 (2008), 1829.Google Scholar
[30]Lee, K.J.; Shin, E.H.; Kim, J.Y.; Oh, T.S.; Lim, K.Y.: Growth of high quality GaN epilayers with SixNy inserting layer on Si (111) substrate. J. Korean Phys. Soc., 45 (2004), S756S759.Google Scholar
[31]Pastor, D.; Ibáñez, J.; Cuscó, R.; Artús, L.; González-Diaz, G.; Calleja, E.: Crystal damage assessment of Be + -implanted GaN by UV Raman scattering. Semicond. Sci. Technol., 22 (2) (2007), 7073.CrossRefGoogle Scholar
[32]Konishi, R.; Yasokuchi, R.; Nakatsuka, O.; Koide, Y.; Moriyama, M.; Murakami, M.: Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p-type 4H-SiC. Mater. Sci. Eng. B, 98 (3) (2003), 286293.CrossRefGoogle Scholar
[33]Carter, C.H. Jr. et al. : Progress in SiC: from material growth to commercial device development. Mater. Sci. Eng., B61–2 (1999), 18.CrossRefGoogle Scholar
[34]Vassilevski, K.; Zekmtas, K.; Constantidis, G.; Stel'chuck, A.: Fabrication and electronics characterization of 4H-SiC p+nn+ diodes. Solid State Electron., 44 (2000), 11731177.CrossRefGoogle Scholar
[35]Yuan, L.; Cooper, J.A. Jr.; Melloch, M.R.; Webb, K.J.: Experimental determination of a SiC IMPATT oscillator. IEEE Electron Device Lett., 22 (6) (2001), 266.Google Scholar
[36]Mukherjee, M.; Mazumder, N.; Dasgupta, A.: Simulation experiment on optical modulation of 4H-SiC millimeter-wave high power IMPATT oscillator. J. Eur. Microw. Assoc. (EuMA Publishing – UK), 4 (2008), 276282.Google Scholar