Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T01:30:54.318Z Has data issue: false hasContentIssue false

Generation of electrical self-oscillations in two-terminal switching devices based on the insulator-to-metal phase transition of VO2 thin films

Published online by Cambridge University Press:  17 November 2011

Jonathan Leroy*
Affiliation:
XLIM UMR 6172, CNRS/Université de Limoges, Avenue Albert Thomas, 87060 Limoges, France. Phone: +33 5 87 50 67 41.
Aurelian Crunteanu*
Affiliation:
XLIM UMR 6172, CNRS/Université de Limoges, Avenue Albert Thomas, 87060 Limoges, France. Phone: +33 5 87 50 67 41.
Julien Givernaud
Affiliation:
XLIM UMR 6172, CNRS/Université de Limoges, Avenue Albert Thomas, 87060 Limoges, France. Phone: +33 5 87 50 67 41.
Jean-Christophe Orlianges
Affiliation:
SPCTS UMR 6638, CNRS/Université de Limoges, CEC, 12 rue Atlantis, 87068 Limoges, France.
Corinne Champeaux
Affiliation:
SPCTS UMR 6638, CNRS/Université de Limoges, CEC, 12 rue Atlantis, 87068 Limoges, France.
Pierre Blondy
Affiliation:
XLIM UMR 6172, CNRS/Université de Limoges, Avenue Albert Thomas, 87060 Limoges, France. Phone: +33 5 87 50 67 41.
*
Corresponding authors: J. Leroy and A. Crunteanu Emails: [email protected]; [email protected]
Corresponding authors: J. Leroy and A. Crunteanu Emails: [email protected]; [email protected]

Abstract

We present the non-linear electrical properties of simple two-terminal switching devices based on vanadium dioxide (VO2) thin films. The current–voltage characteristics of such devices present negative differential resistance (NDR) regions allowing generating electrical self-oscillations across the investigated devices, with frequencies ranging from several kHz up to 1 MHz. We investigate and compare the factors determining the onset of oscillatory phenomenon in both voltage- and current-activated oscillations and explain its origin. For both activation modes, we will correlate the properties of electrical oscillations (amplitude and frequency) with the amplitude of the continuous excitation signal, the physical geometry of the devices or ambient temperature. We conclude by mentioning several possible applications for the oscillation generation in the radiofrequency (RF)/microwave domains (inverters, integrated a.c. signal generators, pressure and temperature sensors, etc.).

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gevorgian, S.: Tuneable materials for agile microwave devices, in 38th European Microwave Conf., Amsterdam, The Netherlands, 2008, paper WWE6-6, 1–34.Google Scholar
[2]Morin, F.J.: Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett., 3 (1959), 3436.CrossRefGoogle Scholar
[3]Stefanovich, G.; Pergament, A.; Stefanovich, D.: Electrical switching and Mott transition in VO2 2000. J. Phys.: Condens. Matter., 12 (2000), 88378845.Google Scholar
[4]Kim, H.T. et al. : Electrical oscillations induced by the metal-insulator transition in VO2. J. Appl. Phys., 107 (2010), 023702.Google Scholar
[5]Cavalleri, A. et al. : Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett., 87 (2001), 237401.CrossRefGoogle ScholarPubMed
[6]Kikuzuki, T.; Lippmaa, M.: Metal-insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals. Appl. Phys. Lett., 96 (2010), 132107.Google Scholar
[7]Dumas-Bouchiat, F.; Champeaux, C.; Catherinot, A.; Crunteanu, A.; Blondy, P.: RF-microwave switches based on reversible semiconductor-metal transitionof the VO2 thin films synthesized by pulsed-laser deposition. Appl. Phys. Lett., 91 (2007), 223505.CrossRefGoogle Scholar
[8]Choi, S.B. et al. : Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film. Appl. Phys. Lett., 98 (2011), 071105.CrossRefGoogle Scholar
[9]Dumas-Bouchiat, F.; Champeaux, C.; Catherinot, A.; Givernaud, J.; Crunteanu, A.; Blondy, P.: RF microwave switches based on reversible metal-semiconductor transition properties of VO2 thin films: an attractive way to realise simple RF microelectronic devices, in materials and devices for smart systems III, in Mater. Res. Soc. Symp. Proc. vol. 1129, Warrendale, PA, 2009, 275286.Google Scholar
[10]Bouyge, D. et al. : Reconfigurable bandpass filter based on split ring resonators and vanadium dioxide (VO2) microwave switches, in Asia-Pacific Microwave Conf., Singapore, 2009, 23322335.Google Scholar
[11]Givernaud, J. et al. : Microwave power limiting devices based on the semiconductor–metal transition in vanadium-dioxide thin films. IEEE Trans. Microw. Theory Tech., 58 (2010), 23522361.CrossRefGoogle Scholar
[12]Sakai, J.: High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance. J. Appl. Phys., 103 (2008), 103708.Google Scholar
[13]Crunteanu, A. et al. : Voltage- and current-activated metal-insulator transition in VO2-based electrical switches: a lifetime operation analysis. Sci. Technol. Adv. Mater., 11 (2010), 065002 (6pp).CrossRefGoogle Scholar
[14]Chang, Y.J. et al. : Phase coexistence in the metal–insulator transition of a VO2 thin films. Thin Solid Films, 486 (2005), 4649.CrossRefGoogle Scholar
[15]Rozen, J.; Lopez, R.; Haglund, R.F.; Feldman, L.C.: Two-dimensional current percolation in nanocrystalline vanadium dioxide films. Appl. Phys. Lett., 88 (2006), 081902.Google Scholar
[16]Kishida, H.; Ito, T.; Nakamura, A.; Takaishi, S.; Yamashita, M.: Current oscillation originating from negative differential resistance in one-dimensional halogen-bridged nickel compounds. J. Appl. Phys., 106 (2009), 016106.CrossRefGoogle Scholar
[17]Mori, T.; Bando, Y.; Kawamoto, T.; Terasaki, I.; Takimiya, K.; Otsubo, T.: Giant nonlinear conductivity and spontaneous current oscillation in an incommensurate organic superconductor. Phys. Rev. Lett., 100, (2008), 037001.Google Scholar