Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:05:46.007Z Has data issue: false hasContentIssue false

Front-end HPA/antenna for multi-radio

Published online by Cambridge University Press:  01 May 2012

Antoine M. Diet*
Affiliation:
UMR 8506, Département de Recherche en Électromagnétisme (DRÉ), Laboratoire des Signaux et Systèmes (L2S), Supélec, plateau du Moulon, F-91192 Gif S/Yvette, France. Phone: +33 169851560
Nicolas Ribière-Tharaud
Affiliation:
CEA, DAM, GRAMAT, F-46500 Gramat, France
Martine Villegas
Affiliation:
Université Paris-Est, Equipe SYstèmes de COmmunication et Micro-systèmes ESYCOM, EA 2552, Groupe ESIEE, BP 99, Noisy-Le-Grand 93162, Cedex, France
Geneviève Baudoin
Affiliation:
Université Paris-Est, Equipe SYstèmes de COmmunication et Micro-systèmes ESYCOM, EA 2552, Groupe ESIEE, BP 99, Noisy-Le-Grand 93162, Cedex, France
*
Corresponding author: A. Diet Email: [email protected]

Abstract

This paper focuses on multi-radio front-end transmitter, a function implied by cognitive radio (0.5–6 GHz). S and C bands standards (wireless local and metropolitan area networks) present a challenge, due to the signal modulation schemes (orthogonal frequency division multiplex (OFDM)/WCDMA, wideband code division multiple access) dynamic (tens of dBs), driving us to a mandatory transmitter linearization. The idea is to provide frequency, flexibility, and average power control of a multi-radio high-efficiency front end for such signals (polar/envelope elimination and restoration (EER) structure). The study implies antennas design and average power control demonstration. Based on a switched mode power amplifier (PA), a discrete detuning is possible to adapt the PA at both “WiMAX” and “Wifi5” frequencies. This architecture amplifies signals with amplitude information. This is coded here by the ΣΔ/PWM (pulse width modulation) technique, to present a constant envelope signal. The amplitude information is restored by a pass-band radio frequency (RF) filter. The antenna can be designed with a notch, to reduce the filtering constraints (selectivity and standards coexistences) and to help in the restoration of amplitude information. Average power control is illustrated by voltage supply variation and results are a possible dynamic of 9.5 dB. To complete the analysis, the simulation of the propagation channel, including antennas, with CST (free space, line of sight) is imported under AGILENT-ADS.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Colantonio, P.; Gianini, F.; Limiti, E.: “High efficiency RF and microwave solid-state power amplifiers”. Wiley and Sons Ltd, 2009, ISBN 978-0-470-51300-2, printed in Great Britain.Google Scholar
[2]Bahl, I.J.: Fundamentals of RF and Microwave Transistors Amplifiers. Wiley and Sons Inc, 2009, ISBN 978-0-470-39166-2, printed in the USA.Google Scholar
[3]Bao, X.; Ammann, M.J.: “Printed UWB Antenna with coupled slotted element for notch frequency function”. Int. J. Antenna Propag., Hindawi Publishing Corporation, Vol. 2008, Article ID 713921, 8 pages, doi:10.1155/2008/713921.Google Scholar
[4]Baudoin, G.; Berland, C.; Vilegas, M.; Diet, A.: Influence of time and processing mismatches between phase and envelope signals in linearisation systems using EER applied to Hiperlan 2. IEEE Int. Microwave Symp., IMS 2003, Philadelphia, USA.Google Scholar
[5]Chawanonphithak, Y.; Phongcharoenpanish, C.: A circular microstrip antenna with tuning stub above wide-slot ground plane for band-notched UWB using inverted U-slot Proc. of Asia-Pacific Microwave Conf., APMC, 2007.CrossRefGoogle Scholar
[6]Chawanonphithak, K.; Phongcharoenpanish, C.; Kosulvit, S.; Krairiksh, M.: “5.8 GHz notched UWB bidirectional elliptical ring antenna excited by circular monopole with curved slot” Proc. of Asia-Pacific Microwave Conf., APMC, 2007.Google Scholar
[7]Choi, J.; Yim, J.; Yang, J.; Kim, J.; Cha, J.; Kang, D.; Kim, D.; Kim, B.: “A ΣΔ digitized polar RF transmitter”. IEEE Trans. Microw. Theory Tech., 52, (12), 2007, 26792690.Google Scholar
[8]Diet, A.; Berland, C.; Villegas, M.; Baudoin, G.: EER architecture specifications for OFDM transmitter using a class E PA. IEEE Microw. Wirel. Compon. Lett. (MTT-S), 14(18) (2004), 389391, ISSN 1531-1309.Google Scholar
[9]Diet, A.; Azoulay, A.; Joisel, A.; Duchêne, B.: A UWB micro-strip antenna design and simulation. European Microwave Week, European Conf. on Wireless Technology, EuMW/ECWT, September 2006, Manchester, UK, 1694–1697.Google Scholar
[10]Diet, A.; Robert, F.; Suárez, M.; Valenta, V.; Montes, L. Andia; Ripoll, C.; Villegas, M.; Baudoin, G.: Flexibility of Class E HPA for Cognitive Radio. IEEE 19th symposium on Personal Indoor and Mobile Radio Communications, PIMRC 2008, September, Cannes, France. ISBN 978-1-4244-2644-7.Google Scholar
[11]Diet, A.; Robert, F.; Ribière-Tharaud, N.; Villegas, M.; Baudoin, G.: Front end accordability for cognitive multi-radio, using a class E HPA and a multi-band antenna. Asia Pacific Microwave Conf., APMC, Hong Kong, China, December 2008, 16–19.Google Scholar
[12]Grebennikov, A.: Class E high efficiency PA: Historical aspects and prospects. Appl. Microw. Wirel., 07, 2002, 6471.Google Scholar
[13]Kahn, L.R.: Single Sideband Transmission by Envelope Elimination and Restoration. Proc. I.R.E., 1952, 40 (7), 803806.Google Scholar
[14]Nielsen, M.; Larsen, T.: Transmitter Architecture Based on ΔΣ Modulation and Switch-Mode Power Amplification, IEEE Trans. Circuits Syst. II, 54 (8), 2007, 735739.Google Scholar
[15]Baudoin, G.; Villegas, M.; Suarez, M.; Diet, A.; Robert, F.: Performance Analysis of Multi-radio Transmitter with Polar or Cartesian Architectures associated with High Efficiency Switched-Mode Power Amplifiers. Radioengineering, proc of Czech and Slovak Technical Universities and URSI Committees, 19, 4, December 2010. ISSN 1210-2512, 470–478Google Scholar
[16]Jeong, J.; Wang, Y.E.: A Polar Delta-Sigma Modulation (PSDM) Scheme for High Efficiency Wireless Transmitters, IEEE MTT-S Int. Microwave Symp. Digest. June 2007.Google Scholar
[17]Wagh, P.; Midya, P.: High-Efficiency Switched Mode RF Power Amplifier. 42nd Midwest Symp. on Circuits and Systems, 1999, 10441047Google Scholar
[18]Raab, F.; Asbeck, P.; Cripps, S.; Kenington, P.; Popovich, Z.; Pothecary, N.; Sevic, J.; and Sokal, N.O.: RF and Microwave PA and Transmitter Technologies High Frequency Electronics, May–November 2003, 2249.Google Scholar
[19]Robert, F.; Suarez, M.; Diet, A.; Villegas, M.; Baudoin, G.: Study of a polar ΔΣ transmitter associated to a high efficiency switched mode amplifier for mobile Wimax. 10th annual IEEE Wireless and Microwave Technology Conf, WAMICON, Clearwater, FL, USA, April 2009.CrossRefGoogle Scholar
[20]Schantz, H.: Art and Science of UWB Antennas 2005 ARTECH HOUSE, INC, 685 Canton Street, Norwood, MA 02062.Google Scholar
[21]Sokal, N.; Sokal, A.: Class E, A new Class of high efficiency Tuned single ended switching PAs. IEEE J of Solid State Circuits, 10 (3), 1975, 168176.Google Scholar