Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T22:59:58.839Z Has data issue: false hasContentIssue false

Exact determination of electrical properties of wurtzite Al1−xInxN/(AlN)/GaN heterostructures (0.07 ≤ x ≤ 0.21) by means of a detailed charge balance equation

Published online by Cambridge University Press:  19 April 2010

Marcus Gonschorek*
Affiliation:
Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Jean-Francois Carlin
Affiliation:
Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Eric Feltin
Affiliation:
Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Marcel Py
Affiliation:
Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Nicolas Grandjean
Affiliation:
Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
*
Corresponding author: M. Gonschorek Email: [email protected]

Abstract

This paper discusses the determination of key electrical parameters of AlInN/(AlN)/GaN heterostructures from capacitance–voltage (CV) measurements. These heterostructures gained recently importance since they allow for high electron mobility transistor (HEMT) devices with several remarkable records: densities of the 2D electron gas (2DEG) of 2.6 × 1013 cm−2 for lattice-matched (LM) heterostructures and barrier thickness of 14 nm, beyond 2 A/mm saturation currents, above 100 GHz operation for heterostructures grown on Si (111) with gate length of 0.1 µm. Despite these striking experimental results, a consistent determination of the most important electrical parameters, namely polarization sheet charge density, surface potential, and dielectric constant of the alloy are still missing. By setting up the correct charge balance equation, these parameters can unambiguously be determined. For instance, in the case of nearly LM Al0.85In0.15N these parameters amount to σAl0.85In0.15N/GaN ~ 3.7 × 1017 m−2, eΦS ~ 3 eV and ɛAl0.85In0.15N ~11.2, for the charge density, the surface barrier potential, and the dielectric constant, respectively.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gonschorek, M. et al. : High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures. Appl. Phys. Lett., 89 (2006), 062106.Google Scholar
[2]Medjdoub, F. et al. : Small-signal characteristics of AlInN/GaN HEMTs. Electron. Lett., 42 (2006), 779.Google Scholar
[3]Sun, H.F. et al. : 102-GHz AlInN/GaN HEMTs on silicon with 2.5-W/mm output power at 10 GHz. IEEE Electron Device Lett., 30 (2009), 796.Google Scholar
[4]Sarazin, N. et al. : AlInN/AlN/GaN HEMT technology on SiC with 10-W/mm and 50% PAE at 10 GHz. IEEE Electron Device Lett., 31 (2010), 11.Google Scholar
[5]Butte, R. et al. : Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. D: Appl. Phys., 40 (2007), 6328.CrossRefGoogle Scholar
[6]Carlin, J.F. et al. : Crack-free fully epitaxial nitride microcavity using highly reflective AllnN/GaN Bragg mirrors. Appl. Phys. Lett., 86 (2005).Google Scholar
[7]Gonschorek, M. et al. : Two-dimensional electron gas density in Al1-xInxN/AlN/GaN heterostructures (0.03 ≤ x ≤ 0.23). J. Appl. Phys., 103 (2008), 093714.Google Scholar
[8]Fischer, A.; Kuhne, H.; Richter, H.: New approach in equilibrium-theory for strained-layer relaxation. Phys. Rev. Lett., 73 (1994), 2712.Google Scholar
[9]Matthews, J.W.; Blakeslee, A.E.: Defects in epitaxial multilayers. 1. Misfit dislocations. J. Cryst. Growth, 27 (1974), 118.Google Scholar
[10]People, R.; Bean, J.C.: Calculation of critical layer thickness versus lattice mismatch for Gexsi1-X/Si strained-layer heterostructures. Appl. Phys. Lett., 47 (1985), 322.Google Scholar
[11]Holec, D. et al. : Critical thickness calculations for InGaN/GaN. J. Cryst. Growth, 303 (2007), 314.Google Scholar
[12]Cao, Y.; Jena, D.: High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions. Appl. Phys. Lett., 90 (2007), 182112.Google Scholar
[13]Yoshikawa, A. et al. : Fabrication and characterization of novel monolayer InN quantum wells in a GaN matrix. J. Vac. Sci. Technol. B, 26 (2008), 1551.Google Scholar
[14]Ambacher, O.; Cimalla, V.: Polarization Effects in Semiconductors: From Ab Initio Theory to Device Application, Springer, New York, 2007.Google Scholar
[15]Jena, D.: Polarization Effects in Semiconductors: From Ab Initio Theory to Device Application, Springer, New York, 2007.Google Scholar
[16]Blood, P.: Capacitance-voltage profiling and the characterisation of III–V semiconductors using electrolyte barriers. Semicond. Sci. Tech., 1 (1986), 7.Google Scholar
[17]Schroder, D.K.: Semiconductor Material and Device Characterization, Wiley, New York; Chichester, 1990, p. xv.Google Scholar
[18]Zhou, L. et al. : Polarization field mapping of Al0.85In0.15N/AlN/GaN heterostructure. Appl. Phys. Lett., 94 (2009), 121909.Google Scholar
[19]Wu, C.L.; Shen, C.H.; Gwo, S.: Valence band offset of wurtzite InN/AlN heterojunction determined by photoelectron spectroscopy. Appl. Phys. Lett., 88 (2006), 032105.Google Scholar
[20]King, P.D.C. et al. : Surface electronic properties of undoped InAlN alloys. Appl. Phys. Lett., 92 (2008), 172105.Google Scholar
[21]Iliopoulos, E. et al. : Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry. Appl. Phys. Lett., 92 (2008), 191907.Google Scholar
[22]King, P.D.C. et al. : InN/GaN valence band offset: high-resolution x-ray photoemission spectroscopy measurements. Phys. Rev. B, 78 (2008), 033308.Google Scholar
[23]Bernardini, F.; Fiorentini, V.: Nonlinear macroscopic polarization in III–V nitride alloys. Phys. Rev. B, 6408 (2001), 085207.Google Scholar
[24]Lorenz, K. et al. : Relaxation of compressively strained AlInN on GaN. J. Cryst. Growth, 310 (2008), 4058.Google Scholar
[25]Darakchieva, V. et al. : Lattice parameters, deviations from Vegard's rule, and E-2 phonons in InAlN. Appl. Phys. Lett., 93 (2008), 261908.CrossRefGoogle Scholar
[26]Jiang, L.F.; Shen, W.Z.; Guo, Q.X.: Temperature dependence of the optical properties of AlInN. J. Appl. Phys., 106 (2009), 013515.Google Scholar