Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T08:37:47.594Z Has data issue: false hasContentIssue false

A 1.2 V 15–32 GHz low-power single-balanced gate mixer with a miniature rat-race hybrid

Published online by Cambridge University Press:  03 April 2012

Chung-Chun Chen*
Affiliation:
Silicon Creations Inc., 49 Highway 23 NE, Suwanee, GA 30024, USA.
Chun-Hsien Lien
Affiliation:
ACE Solution, Hsinchu, Taiwan 302, Republic of China. Phone: + 1 404 398 9426.
Hen-Wai Tsao
Affiliation:
Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China.
Huei Wang
Affiliation:
Department of Electrical Engineering, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China.
*
Corresponding author: C.-C. Chen Email: [email protected]

Abstract

A 15–32 GHz miniature single-balanced gate mixer is proposed and analyzed. It achieves a smaller chip area with acceptable conversion gain and port-to-port isolation. In addition, the design procedure is described in detail. This mixer, fabricated in 90 nm digital CMOS technology, demonstrates a measured conversion loss of 1 dB and higher than 30 dB RF-to-LO port isolation from 17 to 32 GHz, at a local oscillator (LO) driver power of −4.3 dBm. The total dc power consumption is only 6 mW from a 1.2 V supply, including output buffer. The low dc power consumption and LO driver power reduce the power budget, and the proposed miniature rat-race hybrid facilitates integration in a receiver.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Maas, S.A.: Microwave Mixers, 2nd ed., Artech House, Norwood, MA, 1993.Google Scholar
[2]Razavi, B.: RF Microelectronics, Prentice Hall PTR, Upper Saddle River, NJ, 1998.Google Scholar
[3]Lee, T.H.: The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge University Press, New York, 2004.Google Scholar
[4]Kuo, C.C.; Kuo, C.L.; Kuo, C.J.; Maas, S.A.; Wang, H.: Novel miniature and broadband millimeter-wave monolithic star mixers. IEEE Trans. Microw. Theory Tech., 56 (4) (2008), 793802.Google Scholar
[5]Kuo, C.L.; Kuo, C.C.; Lien, C.H.; Tsai, J.H.; Wang, H.: A novel reduced-size rat-race broadside coupler and its application for CMOS distributed sub-harmonic mixer. IEEE Microw. Wirel. Compon. Lett., 18 (3) (2008), 194196.Google Scholar
[6]Yang, H.Y. et al. : Design and analysis of a 0.8–77.5 GHz ultra-broadband distributed drain mixer using 0.13 µm CMOS technology. IEEE Trans. Microw. Theory Tech., 57 (3) (2009), 562572.Google Scholar
[7]Chen, J.H.; Kuo, C.C.; Hsin, Y.M.; Wang, H.: A 15–50 GHz broadband resistive FET ring mixer using 0.18 µm CMOS technology, in IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, May 2010, 784787.Google Scholar
[8]Ellinger, F.: 26.5–30 GHz resistive mixer in 90 nm VLSI SOI CMOS technology with high linearity for WLAN. IEEE Trans. Microw. Theory Tech., 53 (8) (2006), 25592565.Google Scholar
[9]Tseng, S.C.; Meng, C.; Chang, C.H.; Chang, S.H.; Huang, G.W.: A silicon monolithic phase-inverter rat-race coupler using spiral coplanar striplines and its application in a broadband Gilbert mixer. IEEE Trans. Microw. Theory Tech., 56 (8) (2008), 18791888.CrossRefGoogle Scholar
[10]Lien, C.H.; Wang, C.H.; Lin, C.S.; Wu, P.S.; Lin, K.Y.; Wang, H.: Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130 nm CMOS process. IEEE Trans. Microw. Theory Tech., 57 (8) (2009), 19661977.Google Scholar
[11]Lien, C.H.; Wu, P.S.; Lin, K.Y.; Wang, H.: A 60 GHz single-balance gate-pumped down-conversion mixer with reduced-size rat-race hybrid on 130-nm CMOS process, In IEEE MTT-S Int. Microwave Symp. Digest, Atlanta, June 2008, 1481–1484.Google Scholar
[12]Lien, C.H.; Huang, P.C.; Kao, K.Y.; Lin, K.Y.; Wang, H.: 60 GHz double-balanced gate-pumped down-conversion mixers with a combined hybrid on 130 nm CMOS process. IEEE Microw. Wirel. Compon. Lett., 20 (3) (2010), 160162.Google Scholar
[13]Razavi, B.: A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider. IEEE J. Solid-State Circuits, 43 (2) (2008), 477485.Google Scholar
[14]Lee, J.; Liu, M.; Wang, H.: A 75-GHz phase-locked loop in 90 nm CMOS technique. IEEE J. Solid-State Circuits, 43 (6) (2008), 14141426.CrossRefGoogle Scholar
[15]Wu, C.R.; Hsieh, H.H.; Lu, L.H.: An ultra-wideband distributed active mixer MMIC in 0.18 µm CMOS technology. IEEE Trans. Microw. Theory Tech., 55 (4) (2007), 625632.CrossRefGoogle Scholar
[16]Bao, M.; Jacobsson, H.; Aspemyr, L.; Carchon, G.; Xiao, S.: A 9–31 GHz subharmonic passive mixer in 90 nm CMOS Technology. IEEE J. Solid-State Circuits, 41 (10) (2006), 22572264.CrossRefGoogle Scholar