Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T20:17:10.310Z Has data issue: false hasContentIssue false

Measurements of Oxychlorine species on Mars

Published online by Cambridge University Press:  05 April 2016

B. Sutter*
Affiliation:
Jacobs Technology, Houston, TX, USA NASA Johnson Space Center, Houston, TX, USA
R. C. Quinn
Affiliation:
SETI Institute, NASA/Ames Research Center, Mountain View, CA, USA
P. D. Archer
Affiliation:
Jacobs Technology, Houston, TX, USA NASA Johnson Space Center, Houston, TX, USA
D. P. Glavin
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD, USA
T. D. Glotch
Affiliation:
Stony Brook University, Stony Brook, NY, USA
S. P. Kounaves
Affiliation:
Tufts University, Medford, MA, USA
M. M. Osterloo
Affiliation:
LASP, University of Colorado, Boulder, CO, USA
E. B. Rampe
Affiliation:
NASA Johnson Space Center, Houston, TX, USA Aerodyne Industries, Jacobs JETS, Houston, TX, USA
D. W. Ming
Affiliation:
NASA Johnson Space Center, Houston, TX, USA

Abstract

Mars landed and orbiter missions have instrumentation capable of detecting oxychlorine phases (e.g. perchlorate, chlorate) on the surface. Perchlorate (~0.6 wt%) was first detected by the Wet Chemistry Laboratory in the surface material at the Phoenix Mars Landing site. Subsequent analyses by the Thermal Evolved Gas Analyser aboard the same lander detected an oxygen release (~465°C) consistent with the thermal decomposition of perchlorate. Recent thermal analysis by the Mars Science Laboratory's Sample Analysis at Mars instrument has also indicated the presence of oxychlorine phases (up to 1.2 wt%) in Gale Crater materials. Despite being at detectable concentrations, the Chemistry and Mineralogy (CheMin) X-ray diffractometer has not detected oxychlorine phases. This suggests that Gale Crater oxychlorine may exist as poorly crystalline phases or that perchlorate/chlorate mixtures exist, so that individual oxychlorine concentrations are below CheMin detection limits (~1 wt%). Although not initially designed to detect oxychlorine phases, reinterpretation of Viking Gas Chromatography/Mass Spectrometer data also suggest that oxychlorine phases are present in the Viking surface materials. Remote near-infrared spectral analyses by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument indicate that at least some martian recurring slope lineae (RSL) have spectral signatures consistent with the presence of hydrated perchlorates or chlorates during the seasons when RSL are most extensive. Despite the thermal emission spectrometer, Thermal Emission Imaging System, Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité and CRISM detection of hundreds of anhydrous chloride (~10–25 vol%) deposits, expected associated oxychlorine phases (>5–10 vol%) have not been detected. Total Cl and oxychlorine data sets from the Phoenix Lander and the Mars Science Laboratory missions could be used to develop oxychlorine versus total Cl correlations, which may constrain oxychlorine concentrations at other locations on Mars by using total Cl determined by other missions (e.g. Viking, Pathfinder, MER and Odyssey). Development of microfluidic or ‘lab-on-a-chip’ instrumentation has the potential to be the next generation analytical capability used to identify and quantify individual oxychlorine species on future landed robotic missions to Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, R.J. & Jacobs, P.W.M. (1970). The thermal decomposition of magnesium perchlorate and of ammonium perchlorate and magnesium perchlorate mixtures. J. Phys. Chem. 74, 281288.CrossRefGoogle Scholar
Archer, P.D. Jr. et al. (2014). Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. J. Geophys. Res. Planet. 119, 237254. DOI:10.1002/2013JE004493.CrossRefGoogle Scholar
Archer, P.D. et al. (2015). Oxychlorine species on Mars: The Gale Crater Story. #2971. 46 th Lunar Planet. Sci. Conf., March 16–20, The Woodlands, TX.Google Scholar
Arvidson, R.E. et al. (2014). Ancient aqueous environments at Endeavour Crater, Mars. Science 343. DOI:10.1126/science.1248097.CrossRefGoogle ScholarPubMed
Biemann, K. (1974). Test results on the Viking gas chromatograph–mass spectrometer experiment. Orig. Life Evol. Biosph. 5, 417430.CrossRefGoogle ScholarPubMed
Biemann, K. (1979). The implications and limitations of the findings of the Viking organic analysis experiment. J. Mol. Evol. 14, 6570.CrossRefGoogle ScholarPubMed
Biemann, K. & Bada, J.L. (2011). Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro-González et al. J. Geophys. Res. Planet. 116, E12001. DOI:10.1029/2011JE003869.CrossRefGoogle Scholar
Biemann, K., Oro, J., Toulmin, P., Orgel, L.E., Nier, A.O., Anderson, D.M. & Biller, J.A. (1976). Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars. Science 194, 7276.CrossRefGoogle ScholarPubMed
Biemann, K. et al. (1977). The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82, 46414658.CrossRefGoogle Scholar
Bish, D.L. et al. (2013). X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale Crater. Science 341. DOI:10.1126/science.1238932.CrossRefGoogle ScholarPubMed
Bishop, J.L., Quinn, R. & Dyar, M.D. (2014). What lurks in the martian rocks and soil? Investigations of sulfates, phosphates, and perchlorates spectral and thermal properties of perchlorate salts and implications for Mars. Amer Miner 99, 15801592.CrossRefGoogle Scholar
Blake, D.F. et al. (2012). Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci. Rev. 170, 341399.CrossRefGoogle Scholar
Blake, D.F. et al. (2013). Curiosity at Gale Crater, Mars: characterization and analysis of the Rocknest sand shadow. Science 341. DOI:10.1126/science.1239505.CrossRefGoogle ScholarPubMed
Boynton, W.V. et al. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297. DOI:10.1126/science.1073722.CrossRefGoogle ScholarPubMed
Boynton, W.V. et al. (2009). Phoenix landing site evidence for calcium carbonate at the Mars. Science 325, 6164.CrossRefGoogle ScholarPubMed
Brückner, J., Dreibus, G., Rieder, R. & Wänke, H. (2003). Refined data of the alpha proton X-ray spectrometer analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry. J. Geophys. Res. Planet. 108, 8094. doil:10.1029/2003JE002060.CrossRefGoogle Scholar
Cannon, K.M., Sutter, B., Ming, D.W., Boynton, W.V. & Quinn, R. (2012). Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA). Geophys. Res. Lett. 39, L13203.CrossRefGoogle Scholar
Catling, D.C., Claire, M.W., Zahnle, K.J., Quinn, R.C., Clark, B.C., Hecht, M.H. & Kounaves, S. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. 115, E00E11. DOI:10.1029/2009JE003425.Google Scholar
Carrier, B.L. & Kounaves, S.P. (2015). The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 37393745.CrossRefGoogle Scholar
Chipera, S.J. & Bish, D.L. (2002). FULLPAT: a full pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. J. Appl. Crystallogr. 35, 744749.CrossRefGoogle Scholar
Clark, B.C., Baird, A.K., Rose, H.J., Toulmin, P., Christian, R.P., Kelliher, W.C., Castro, A.J., Rowe, C.D., Keil, K. & Huss, G.R. (1977). The Viking X ray fluorescence experiment: Analytical methods and early results J. Geophys. Res. 82, 45774594.CrossRefGoogle Scholar
Clark, B.C. & Baird, A.K. (1979). Is the martian lithosphere sulfur rich? J. Geophys. Res. 84, 83958403.CrossRefGoogle Scholar
Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnable, L. & Candelaria, M.P. (1982). Chemical composition of martian fines. J. Geophys. Res. 87, 1005910067.CrossRefGoogle Scholar
Clark, B.C. et al. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240, 7394.CrossRefGoogle Scholar
Cull, S.C., Arvidson, R.E., Catalano, J.G., Ming, D.W., Morris, R.V., Mellon, M.T. & Lemmon, M. (2010). Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars. Geophys. Res. Lett. 37, L22203. DOI:10.1029/2010GL045269.CrossRefGoogle Scholar
Evenhuis, C.J., Guijt, R.M., Macka, M., Haddad, P.R. (2004). Determination of inorganic anions using microfluidic devices. Electrophoresis 25, 36023624.CrossRefGoogle Scholar
Fang, D., Oberlin, E., Ding, W. & Kounaves, S.P. (2015). A common-factor approach for multivariate data cleaning with an application to Mars Phoenix mission data. ArXiv 2015. [cs.AI], 1510.01291.Google Scholar
Freissinet, C. et al. (2015). Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res. Planet. 120, 495514. DOI:10.1002/2014JE004737.CrossRefGoogle ScholarPubMed
Gellert, R. et al. (2006). Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05. DOI:10.1029/2005JE002555.Google Scholar
Gellert, R. et al. (2013). Initial MSL APXS activities and observations at Gale Crater, Mars. 44th Lunar Planet. Sci. Conf., #1432, March 18–22, The Woodlands, TX.Google Scholar
Glavin, D.P. et al. (2013). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planet. 118, 19551973. DOI:10.1002/jgre.20144.CrossRefGoogle Scholar
Glotch, T.D., Bandfield, J.L., Tornabene, L.L., Jensen, H.B. & Seelos, F.P. (2010). Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys. Res. Lett. 37, L16202. DOI:10.1029/2010GL044557.CrossRefGoogle Scholar
Glotch, T.D., Bandfield, J.L., Wolff, M.J. & Arnold, J.A. (2013). Chloride salt deposits on Mars— No longer “putative.” 44 th Lunar Planet. Sci. Conf., # 1549. March 18–22, The Woodlands, TX.Google Scholar
Glotch, T.D., Bandfield, J.L., Wolff, M.J., Arnold, J.A. & Che, C. (2016). Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. J. Geophys. Res. Planets, 121. DOI:10.1002/2015JE004921.CrossRefGoogle Scholar
Goetz, W. et al. (2010). Microscopy analysis of soils at the Phoenix landing site, Mars: classification of soil particles and description of their optical and magnetic properties. J. Geophys. Res. Planet. 115, E00E22. DOI:10.1029/2009JE003437.Google Scholar
Haddad, P.R., Nesterenko, P.N. & Buchberger, W. (2008). Recent developments and emerging directions in ion chromatography. J. Chromatogr. A 1184, 456473.CrossRefGoogle ScholarPubMed
Hanley, J., Chevrier, V.F., Berget, D.J. & Adams, R.D. (2012). Chlorate salts and solutions on Mars. Geophys. Res. Lett. 39, L08201. DOI:10.1029/2012GL051239.CrossRefGoogle Scholar
Hanley, J., Chevrier, V.F., Barrows, S., Swaffer, C. & Altheide, T.S. (2015). Near- and mid-infrared reflectance spectra of hydrated oxychlorine salts with implications for Mars. J. Geophys. Res. Planet 120, 14151426. DOI:10.1002/2013JE004575.CrossRefGoogle Scholar
Hecht, M.H. et al. (2009). Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix Lander Site. Science 325, 6467.CrossRefGoogle ScholarPubMed
Hoffman, J.H., Chaney, R.C. & Hammack, H. (2008). Phoenix Mars mission – the thermal evolved gas analyzer. J. Am. Soc. Mass Spectrom. 19, 13771383.CrossRefGoogle ScholarPubMed
Jackson, W.A. et al. (2015). Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochim. Cosmochim. Acta 164, 502522.CrossRefGoogle Scholar
Jensen, H.B. & Glotch, T.D. (2011). Investigation of the near-infrared spectral character of putative Martian chloride deposits. J. Geophys. Res. 116, E00J03. DOI:10.1029/2011JE003887.Google Scholar
Keller, J.M. et al. (2006). Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS. J. Geophys. Res. 111, E03S08. DOI:10.1029/2006JE002679.Google Scholar
Kounaves, S.P. et al. (2009). The MECA wet chemistry laboratory on the 2007 phoenix mars Scout lander. J. Geophys. Res. 114, E00A19. DOI:10.1029/2008JE003084.Google Scholar
Kounaves, S.P. et al. (2010). Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results. J. Geophys. Res. Planet. 115, E00E10. DOI:10.1029/2009JE003424.CrossRefGoogle Scholar
Kounaves, S.P., Nikos, A., Chaniotakis, N.A., Chevrier, V.F., Carrier, B.L., Folds, K.E., Hansen, V.M., McElhoney, K.M., O'Neil, G.D. & Weber, A.W. (2014a). Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226231.CrossRefGoogle Scholar
Kounaves, S.P., Carrier, B.L., O'Neil, G.D., Stroble, S.T. & Claire, M.W. (2014b). Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics. Icarus 229, 206213.CrossRefGoogle Scholar
Lauer, H.V., Ming, D.W., Sutter, B., Golden, D.C., Morris, R.V. & Boynton, W.V. (2009). Thermal and evolved gas analysis of magnesium perchlorate: Implications for perchlorates in soils at the Mars Phoenix Landing site. 40 th Lunar Planet. Sci. Conf. #2196, March 23–27, 2009, The Woodlands, TX.Google Scholar
Lee, J.S. & Hsu, C.K. (2001). The DSC studies on the phase transition, decomposition and melting of potassium perchlorate with additives. Thermochim. Acta 367–368, 367370.CrossRefGoogle Scholar
Leshin, L.A. et al. (2013). Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity Rover. Science 341, 1238937–1–9.CrossRefGoogle ScholarPubMed
Mahaffy, P.R. et al. (2012). The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401478.CrossRefGoogle Scholar
Marion, G.M., Catling, D.C., Zahnle, K.J. & Claire, M.W. (2010). Modeling aqeous perchlorate chemistries with applications to Mars. Icarus 207, 675685.CrossRefGoogle Scholar
Markowitz, M.M. (1963). A basis for the prediction of the thermal decomposition products of metal perchlorates. J. Inorg. Nucl. Chem. 25, 407414.CrossRefGoogle Scholar
Marvin, G.G. & Woolaver, L.B. (1945). Thermal decomposition of perchlorates. Indust. Eng. Chem. 17, 474476.Google Scholar
McAdam, A.C. et al. (2014). Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. J. Geophys. Res. Planet. 119, 373393.CrossRefGoogle Scholar
Migdal-Mikuli, A. & Hetmańczyk, J. (2008). Thermal behavior of [Ca(H2O)4](ClO4)2 and [Ca(NH3)6](ClO4)2 . J. Therm. Anal. Calor. 91, 529534.CrossRefGoogle Scholar
Miller, F.A. & Wilkins, C.H. (1952). Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 24, 12531294.CrossRefGoogle Scholar
Ming, D.W. et al. (2008). Geochemical properties of rocks and soils in Gusev Crater, Mars: results of the alpha particle X-ray spectrometer from Cumberland Ridge to home plate. J. Geophys. Res. 113, E12S39. DOI:10.1029/2008JE003195.Google Scholar
Ming, D.W. et al. (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343, 1245267. http://doi.org/10.1126/science.1245267.CrossRefGoogle ScholarPubMed
Morris, R.V. et al. (2006). Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15. DOI:10.1029/2006JE002791.Google Scholar
Morris, R.V., Golden, D.C., Ming, D.W., Graff, T.G., Arvidson, R.E., Wiseman, S.M., Lichtenberg, K.A. & Cull, S. (2009). Visible and near-IR reflectance spectra for smectite, sulfate, and perchlorate under dry conditions for interpretation of martian surface mineralogy. 40 th Lunar Planet. Sci. Conf. #2317, March 23–27, The Woodlands, TX.Google Scholar
Murchie, S.L. et al. (2009). A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06. DOI:10.1029/2009JE003342.Google Scholar
Murrihy, J.P. et al. (2001). Ion chromatography on-chip. J. Chromatography A 924, 233238.CrossRefGoogle ScholarPubMed
Navarro-González, R. & McKay, C.P. (2011). Reply to comment by Biemann and Bada on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars,” J. Geophys. Res. Planet. 116, E12002. DOI:10.1029/2011JE003880.CrossRefGoogle Scholar
Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A.C. & McKay, C.P. (2010). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. Planet. 115, E12010. DOI:10.1029/2010JE003599.CrossRefGoogle Scholar
Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.L., Hanley, J., Massé, M. & Chojnacki, M. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832.Google Scholar
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, T.D., Baldridge, A.M., Christensen, P.R., Tornabene, L.L. & Anderson, F.S. (2008). Chloride-bearing materials in the southern highlands of Mars. Science 319, 16511654.CrossRefGoogle ScholarPubMed
Osterloo, M.M., Anderson, F.S., Hamilton, V.E. & Hynek, B.M. (2010). Geologic context of proposed chloride bearing materials on Mars. J. Geophys. Res. 115, E10012. DOI:10.1029/2010JE003613.Google Scholar
Pejov, L. & Petruševski, V. (2002). Fourier transform infrared study of perchlorate (35ClO4 and 37ClO4 ) anions isomorphously isolated in potassium permanganate matrix. Vibrational anharmonicity and pseudo-symmetry effects. J. Phys. Chem. Sol. 63, 2873–1881.CrossRefGoogle Scholar
Rampe, E.B., Morris, R.V., Ruff, S.W., Horgan, B., Dehouck, E., Achilles, C.N., Ming, D.W., Bish, D.L., Chipera, S.J. & the MSL Science Team. (2014). Amorphous phases on the surface of Mars. Eighth International Conference on Mars, #1239, Pasadena, CA.Google Scholar
Rao, B., Hatzinger, P.B., Bohlke, J.K., Sturchio, N.C., Eckardt, F.D. & Jackson, W.A. (2010). Natural chlorate in the environment: application of a new IC-ESI/MS/MS method with a Cl18O3-internal standard. Environ. Sci. Technol. 44, 84298434.CrossRefGoogle Scholar
Rieder, R., Economou, T., Wanke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G. & McSween, H.Y. (1997). The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the x-ray mode. Science 278, 17711774.CrossRefGoogle ScholarPubMed
Rieder, R. et al. (2004). Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306, 17461749.CrossRefGoogle ScholarPubMed
Robertson, K. & Bish, D. (2011). Stability of phases in the Mg(ClO4)2·nH2O system and implications for perchlorate occurrences on Mars. J. Geophys. Res. Planet. 116, E07006. DOI:10.1029/2010JE003754.CrossRefGoogle Scholar
Ruesch, O., Poulet, F., Vincendon, M., Bibring, J.-P., Carter, J., Erkeling, G., Gondet, B., Hiesinger, H., Ody, A. & Reiss, D. (2012). Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. J. Geophys. Res. 117, E00J13. DOI:10.1029/2012JE004108.Google Scholar
Rudloff, W.K. & Freeman, E.S. (1970). Catalytic effect of metal oxides on thermal decomposition reactions. II. The catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by thermal analysis methods. J. Phys. Chem. 74, 33173324.CrossRefGoogle Scholar
Ruff, S.W., Christensen, P.R., Barbera, P.W. & Anderson, D.L. (1997). Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration. J. Geophys. Res. 102, 1489914913. DOI:10.1029/97JB00593.CrossRefGoogle Scholar
Rushneck, D.R., Diaz, A.V., Howarth, D.W., Rampacek, J., Olson, K.W., Dencker, W.D., Smith, P., McDavid, L., Tomassian, A., Harris, M., Bulota, K., Biemann, K., LaFleur, A.L., Biller, J.E., Owen, T. (1978). Viking gas chromatograph–mass spectrometer. Rev. Sci. Instrum. 49, 817834. http://doi.org/doi:10.1063/1.1135623 CrossRefGoogle ScholarPubMed
Seelos, K.D. et al. (2008). Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites. J. Geophys. Res. Planet. 113, E00A13. DOI:10.1029/2008JE003088.CrossRefGoogle Scholar
Smith, P.H. et al. (2009). H2O at the Phoenix landing site. Science 325, 5861.CrossRefGoogle ScholarPubMed
Stern, J.C. et al. (2015). Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale Crate, Mars. Proc. Natl. Acad. Sci. U.S.A. 112, 4254–4250.CrossRefGoogle Scholar
Sutter, B., Dalton, J.B., Ewing, S.A., Amundson, R. & McKay, C.P. (2007). Terrestrial analogs for interpretation of infrared spectra from the martian surface and subsurface: sulfate, nitrate, carbonate, and phyllosilicate-bearing Atacama Desert soils. J. Geophys. Res. 112, G04S10. DOI:10.1029/2006JG000313.Google Scholar
Toner, J.D., Catling, D.C. & Light, B. (2014). Soluble salts at the Phoenix Lander site, Mars: a reanalysis of the Wet Chemistry Laboratory data. Geochim. Cosmochim. Acta 136, 142168.CrossRefGoogle Scholar
Vaniman, D.T. et al. (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343. 10.1126/science.1243480.CrossRefGoogle ScholarPubMed
Wray, J.J., Murchie, S.L., Squyres, S.W., Seelos, F.P. & Tornabene, L.L. (2009). Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology 37, 10431046.CrossRefGoogle Scholar
Wu, S.-H., Chi, J.-H., Huang, C.-C., Lin, N.-K., Peng, J.-J. & Shu, C.-M. (2010). Thermal hazard analyses and incompatible reaction evaluation of hydrogen peroxide by DSC. J. Therm. Anal. Calorim. 102, 563568.CrossRefGoogle Scholar
Yen, A.S. et al. (2006). Nickel on Mars: constraints on meteoritic material at the surface. J. Geophys. Res. 111, E12S11. DOI:10.1029/2006JE002797.Google Scholar
Young, R.A. (1993). Introduction to the Rietveld method. In The Rietveld Method, Intl Union Crystallography Monographs Crystallography, vol. 5, ed. Young, R.A., pp. 138. Oxford University Press, Oxford, UK.Google Scholar
Zent, A.P. & McKay, C.P. (1994). The chemical reactivity of the martian soil and implications for future missions. Icarus 108, 146157.CrossRefGoogle Scholar