Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T12:12:40.315Z Has data issue: false hasContentIssue false

Thermal decomposition of MgCO3 during the atmospheric entry of micrometeoroids

Published online by Cambridge University Press:  12 January 2017

G. Micca Longo*
Affiliation:
Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari, Italy
S. Longo
Affiliation:
Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari, Italy CNR-Nanotec, via Amendola 122/D, 70126 Bari, Italy

Abstract

In this paper, a first study of the atmospheric entry of carbonate micrometeoroids, in an astrobiological perspective, is performed. Therefore an entry model, which includes two-dimensional dynamics, non-isothermal atmosphere, ablation and radiation losses, is build and benchmarked to literature data for silicate micrometeoroids. A thermal decomposition model of initially pure magnesium carbonate is proposed, and it includes thermal energy, mass loss and the effect of changing composition as the carbonate grain is gradually converted into oxide. Several scenarios are obtained by changing the initial speed, entry angle and grain diameter, producing a systematic comparison of silicate and carbonate grain. The results of the composite model show that the thermal behaviour of magnesium carbonate is markedly different from that of the corresponding silicate, much lower equilibration temperatures being reached in the first stages of the entry. At the same time, the model shows that the limit of a thermal protection scenario, based on magnesium carbonate, is the very high decomposition speed even at moderate temperatures, which results in the total loss of carbon already at about 100 km altitude. The present results show that, although decomposition and associated cooling are important effects in the entry process of carbonate grains, the specific scenario of pure MgCO3 micrograin does not allow complex organic matter delivery to the lower atmosphere. This suggests us to consider less volatile carbonates for further studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisceglia, E., Micca Longo, G. & Longo, S. (2016). Thermal decomposition rate of MgCO3 as an inorganic astrobiological matrix in meteorites. International Journal of Astrobiology 17.Google Scholar
Blanco, A., Orofino, V., DElia, M., Fonti, S., Mastandrea, A., Guido, A. & Russo, F. (2013). Infrared spectroscopy of microbially induced carbonates and past life on mars. Icarus 226(1), 119126.CrossRefGoogle Scholar
Blanco, A., Orofino, V., Mancarella, F., Fonti, S., Mastandrea, A., Guido, A., Tosti, F., Russo, F. & D'Elia, M. (2014). Microbialites vs detrital micrites: degree of biogenicity, parameter suitable for mars analogues. Planetary and Space Science 97, 3442.Google Scholar
Borg, L.E., Connelly, J.N., Nyquist, L.E., Shih, C.-Y., Wiesmann, H. & Reese, Y. (1999). The age of the carbonates in martian meteorite alh84001. Science 286(5437), 9094.CrossRefGoogle ScholarPubMed
Boynton, W.V. et al. (2009). Evidence for calcium carbonate at the mars phoenix landing site. Science 325(5936), 6164.CrossRefGoogle ScholarPubMed
Brack, A. et al. (2002). Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? the ESA artificial meteorite experiment stone. Planetary and Space Science 50(7), 763772.Google Scholar
Busemann, H., Nguyen, A.N., Cody, G.D., Hoppe, P., Kilcoyne, A.L.D., Stroud, R.M., Zega, T.J. & Nittler, L.R. (2009). Ultra-primitive interplanetary dust particles from the comet 26p/Grigg–Skjellerup dust stream collection. Earth and Planetary Science Letters 288(1), 4457.Google Scholar
Chase, M.W. (1986). JANAF thermochemical tables. JANAF thermochemical tables, by Chase, MW Washington, DC: American Chemical Society; New York: American Institute of Physics for the National Bureau of Standards, c1986. United States. National Bureau of Standards. 1.Google Scholar
D'Elia, M., Blanco, A., Galiano, A., Orofino, V., Fonti, S., Mancarella, F., Guido, A., Russo, F. & Mastandrea, A. (2016). SEM morphological studies of carbonates and the search for ancient life on mars. International Journal of Astrobiology 16.Google Scholar
De LEUW, S., Rubin, A.E. & Wasson, J.T. (2010). Carbonates in CM chondrites: complex formational histories and comparison to carbonates in ci chondrites. Meteoritics & Planetary Science 45(4), 513530.Google Scholar
Flynn, G.J., Keller, L.P., Feser, M., Wirick, S. & Jacobsen, C. (2003). The origin of organic matter in the solar system: evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta 67(24), 47914806.CrossRefGoogle Scholar
Flynn, G., Keller, L.P., Jacobsen, Ch., Wirick, S. & Miller, M.A. (2000). Organic carbon in interplanetary dust particles. In Bioastronomy 99, vol. 213.Google Scholar
Fonti, S., Jurewicz, A., Blanco, A., Blecka, M.I. & Orofino, V. (2001). Presence and detection of carbonates on the martian surface. Journal of Geophysical Research: Planets 106(E11), 2781527822.Google Scholar
Foucher, F., Westall, F., Brandstätter, F., Demets, R., Parnell, J., Cockell, C.S., Edwards, H.G.M., Bény, J.-M. & Brack, A. (2010). Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth's atmosphere: the Stone 6 experiment. Icarus 207(2), 616630.Google Scholar
Love, S.G. & Brownlee, D.E. (1991). Heating and thermal transformation of micrometeoroids entering the earth's atmosphere. Icarus 89(1), 2643.Google Scholar
L'vov, B.V. (1997). Mechanism of thermal decomposition of alkaline-earth carbonates. Thermochimica Acta 303(2), 161170.Google Scholar
Lvov, B.V. (2002). Mechanism and kinetics of thermal decomposition of carbonates. Thermochimica Acta 386(1), 116.Google Scholar
Matrajt, G., Messenger, S., Brownlee, D. & Joswiak, D. (2012). Diverse forms of primordial organic matter identified in interplanetary dust particles. Meteoritics & Planetary Science 47(4), 525549.Google Scholar
McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Search for past life on mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273(5277), 924.CrossRefGoogle ScholarPubMed
McKay, C.P., Friedmann, E.I., Frankel, R.B. & Bazylinski, D.A. (2003). Magnetotactic bacteria on earth and on mars. Astrobiology 3(2), 263270.CrossRefGoogle ScholarPubMed
Noguchi, T., Nakamura, T. & Nozaki, W. (2002). Mineralogy of phyllosilicate-rich micrometeorites and comparison with Tagish lake and Sayama meteorites. Earth and Planetary Science Letters 202(2), 229246.Google Scholar
Opik, E.J. (2004). Physics of Meteor Flight in the Atmosphere. Courier Corporation, New York.Google Scholar
Orofino, V., Blanco, A., Blecka, M.I., Fonti, S. & Jurewicz, A. (2000). Carbonates and coated particles on mars. Planetary and Space Science 48(12), 13411347.Google Scholar
Orofino, V., Blanco, A., DElia, M., Fonti, S. & Licchelli, D. (2009). Time-dependent degradation of biotic carbonates and the search for past life on mars. Planetary and Space Science 57(5), 632639.CrossRefGoogle Scholar
Palomba, E., Zinzi, A., Cloutis, E.A., DAmore, M., Grassi, D. & Maturilli, A. (2009). Evidence for mg-rich carbonates on mars from a 3.9 µm absorption feature. Icarus 203(1), 5865.CrossRefGoogle Scholar
Parnell, J., Bowden, S.A., Muirhead, D., Blamey, N., Westall, F., Demets, R., Verchovsky, S., Brandstätter, F. & Brack, A. (2011). Preservation of organic matter in the Stone 6 artificial meteorite experiment. Icarus 212(1), 390402.CrossRefGoogle Scholar
Pizzarello, S., Cooper, G.W. & Flynn, G.J. (2006). The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteorites and the Early Solar System II 1, 625651.Google Scholar
Rao, T.R. (1996). Kinetics of calcium carbonate decomposition. Chemical Engineering & Technology 19(4), 373377.CrossRefGoogle Scholar
Rees, M.H. (1989). Physics and Chemistry of the Upper Atmosphere, vol. 1. Cambridge University Press, Cambridge.Google Scholar
Rivkin, A.S., Volquardsen, E.L. & Clark, B.E. (2006). The surface composition of Ceres: discovery of carbonates and iron-rich clays. Icarus 185(2), 563567.Google Scholar
Thomas-Keprta, K.L., Clemett, S.J., Mckay, D.S., Gibson, E.K. & Wentworth, S.J. (2009). Origins of magnetite nanocrystals in martian meteorite ALH84001. Geochimica et Cosmochimica Acta 73(21), 66316677.CrossRefGoogle Scholar
Yabuta, H. et al. (2014). X-ray absorption near edge structure spectroscopic study of hayabusa category 3 carbonaceous particles. Earth, Planets and Space 66(1), 156.CrossRefGoogle Scholar