Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:47:54.401Z Has data issue: false hasContentIssue false

The longevity of habitable planets and the development of intelligent life

Published online by Cambridge University Press:  30 August 2016

Fergus Simpson*
Affiliation:
ICC, University of Barcelona, Marti i Franques 1, 08028, Barcelona, Spain

Abstract

Why did the emergence of our species require a timescale similar to the entire habitable period of our planet? Our late appearance has previously been interpreted by Carter (2008) as evidence that observers typically require a very long development time, implying that intelligent life is a rare occurrence. Here we present an alternative explanation, which simply asserts that many planets possess brief periods of habitability. We also propose that the rate-limiting step for the formation of observers is the enlargement of species from an initially microbial state. In this scenario, the development of intelligent life is a slow but almost inevitable process, greatly enhancing the prospects of future search for extra-terrestrial intelligence (SETI) experiments such as the Breakthrough Listen project.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1974). IEEE Trans. Autom. Contr. 19, 716.CrossRefGoogle Scholar
Archer, C. & Vance, D. (2006). Geology 34, 153.CrossRefGoogle Scholar
Brasier, M.D. et al. (2015). Proc. Natl. Acad. Sci. 112, 4859.CrossRefGoogle Scholar
Carter, B. (2008). Int. J. Astrobiol. 7, 177.CrossRefGoogle Scholar
Carter, B. & McCrea, W.H. (1983). Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 310, 347.Google Scholar
Clauset, A. & Erwin, D.H. (2008). Science 321, 399.CrossRefGoogle Scholar
Clauset, A. & Redner, S. (2009). Phys. Rev. Lett. 102, 038103.CrossRefGoogle Scholar
Czaja, A. (2016). In preparation.Google Scholar
Han, T.-M. & Runnegar, B. (1992). Science 257, 232.CrossRefGoogle Scholar
Hanson, R. (1998). Unpublished manuscript, 23 September, 168.Google Scholar
Javaux, E.J. et al. (2010). Nature 463, 934.CrossRefGoogle Scholar
Lineweaver, C.H. & Davis, T.M. (2002). Astrobiology 2, 293.CrossRefGoogle Scholar
Livio, M. (1999). ApJ 511, 429.CrossRefGoogle Scholar
Montgomery, S.H. et al. (2013). Evolution 67, 3339.CrossRefGoogle Scholar
Payne, J.L. et al. (2009). Proc. Natl. Acad. Sci. USA 106, 24.CrossRefGoogle Scholar
Runnegar, B. (1991). Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 97.CrossRefGoogle Scholar
Schopf, J.W. & Packer, B.M. (1987). Science 237, 70.CrossRefGoogle Scholar
Schwarz, G. (1978). Ann. Stat. 6, 461.CrossRefGoogle Scholar
Simpson, F. (2016). Mon. Not. R. Astron. Soc. 456, L59.CrossRefGoogle Scholar
Sugitani, K. et al. (2015). Geobiology 13, 507.CrossRefGoogle Scholar
Szathmáry, E. & Smith, J.M. (1997). J. Theor. Biol. 187, 555.CrossRefGoogle Scholar
Szathmary, E. & Smith, J.M. (2000). Shaking the Tree: Readings from, 32.Google Scholar
Wacey, D. et al. (2011). Nat. Geosci. 4, 698.CrossRefGoogle Scholar
Wacey, D. et al. (2015). Microsc. Microanal. 21, 2091.CrossRefGoogle Scholar
Zhu, S. et al. (2016). Nat. Commun. 7, 11500.Google Scholar