Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T13:07:58.343Z Has data issue: false hasContentIssue false

Lichen biomarkers upon heating: a Raman spectroscopic study with implications for extra-terrestrial exploration

Published online by Cambridge University Press:  17 February 2016

I. Miralles
Affiliation:
Estación Experimental de Zonas Áridas (EEZA-CSIC), 04230 La Cañada de San Urbano, Almería, Spain Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain-La-Neuve, B-1348-Louvain-la-Neuve, Belgium
C. Capel Ferrón
Affiliation:
Unidad de Espectrospopía Vibracional. Servicios Centrales de Apoyo a la Investigación (SCAI). Universidad de Málaga. Campus de Teatinos s/n, 29071 Málaga, Spain
V. Hernández
Affiliation:
Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
J. T. López-Navarrete
Affiliation:
Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
S. E. Jorge-Villar*
Affiliation:
University of Burgos, Área de Geodinámica, Facultad de Humanidades, C/Villadiego s/n, 09001 Burgos, Spain National Research Center on Human Evolution (CENIEH), Paseo Sierra Atapuerca 3, 09002 Burgos, Spain

Abstract

Lithopanspermia Theory has suggested that life was transferred among planets by meteorites and other rocky bodies. If the planet had an atmosphere, this transfer of life had to survive drastic temperature changes in a very short time in its entry or exit. Only organisms able to endure such a temperature range could colonize a planet from outer space. Many experiments are being carried out by NASA and European Space Agency to understand which organisms were able to survive and how. Among the suite of instruments designed for extraplanetary exploration, particularly for Mars surface exploration, a Raman spectrometer was selected with the main objective of looking for life signals. Among all attributes, Raman spectroscopy is able to identify organic and inorganic compounds, either pure or in admixture, without requiring sample manipulation. In this study, we used Raman spectroscopy to examine the lichen Squamarina lentigera biomarkers. We analyse spectral signature changes after sample heating under different experimental situations, such as (a) laser, (b) analysis accumulations over the same spot and (c) environmental temperature increase. Our goal is to evaluate the capability of Raman spectroscopy to identify unambiguously life markers even if heating has induced spectral changes, reflecting biomolecular transformations. Usnic acid, chlorophyll, carotene and calcium oxalates were identified by the Raman spectra. From our experiments, we have seen that usnic acid, carotene and calcium oxalates (the last two have been suggested to be good biomarkers) respond in a different way to environmental heating. Our main conclusion is that despite their abundance in nature or their inorganic composition the resistance to heat makes some molecules more suitable than others as biomarkers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alajtal, A.I., Edwards, H.G.M. & Scowen, I.J. (2010). Anal. Bioanal. Chem. 397, 215221.CrossRefGoogle Scholar
Arrhenius, S. (1903). Die Umschau 7, 481485.Google Scholar
Baqué, M., de Vera, J.P., Rettberg, P. & Billi, D. (2013). Acta Astronaut. 91, 180186.CrossRefGoogle Scholar
Bertrand, M., Chabin, A., Brack, A., Cottin, H., Chaput, D. & Westall, F. (2012). Astrobiology 12, 426435.CrossRefGoogle Scholar
Biomex: an International Space Experiment Project (2014). DLR Institute of Planetary Research. http://www.dlr.de/pf/en/desktopdefault.aspx/tabid-178/327_read-37560/ (accessed 15 October 2014).Google Scholar
Cockell, C.S. (2008). Orig. Life Evol. Biosph. 38, 87104.CrossRefGoogle Scholar
Cockell, C.S. & Knowland, J. (1999). Biol. Rev. Camb. Philos. Soc. 74, 311345.CrossRefGoogle Scholar
Cockell, C.S., Rettberg, P., Rabbow, E. & Olsson-Francis, K. (2011). Int. Soc. Microb. Ecol. J. 5, 16711682.Google Scholar
Crick, F. (1981). Life Itself: Its Origin And Nature. Simon and Schuster, New York.Google Scholar
de la Torre, R., Horneck, G., Sancho, L., Pintado, A., Rabbow, E., Scherer, K., Facius, R., Deutschmann, U. & Reina, M. (2004). 35th Cospar Sci Assem 25, 4523.Google Scholar
de la Torre, R., Sancho, L.G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M. & Horneck, G. (2007). Adv. Space Res. 40, 16651671.CrossRefGoogle Scholar
de la Torre, R. et al. (2010). Icarus 208, 735748.CrossRefGoogle Scholar
de Oliveira, L.F.C., Edwards, H.G.M., Feo-Manga, J.C., Seaward, M.R.D. & Lücking, R. (2002). Lichenologist 34, 259266.CrossRefGoogle Scholar
de Vera, J.P. (2012). Fungal Ecol. 5, 472479.CrossRefGoogle Scholar
de Vera, J.P., Boettger, U., Noetzel, R.T., Sánchez, F.J., Grunow, D. & Schmitz, N. (2012). Planet. Space Sci. 74, 103110.CrossRefGoogle Scholar
Dickensheets, D.L., Wynn-Williams, D.D., Edwards, H.G.M., Schoen, C., Crowder, C. & Newton, E.M. (2000). J. Raman Spectrosc. 31, 633635.3.0.CO;2-R>CrossRefGoogle Scholar
Edwards, H.G.M. (2007). Spectrochim. Acta A 68, 11261132.CrossRefGoogle Scholar
Edwards, H.G.M., Newton, E.M., Wynn-Williams, D.D. & Coombes, S.R. (2003a). J. Mol. Struct. 648, 4959.CrossRefGoogle Scholar
Edwards, H.G.M., Newton, E.M., Dickensheets, D.L. & Wynn-Williams, D.D. (2003b). Spectrochim. Acta A 59, 22772290.CrossRefGoogle Scholar
Edwards, H.G.M., Wynn-Williams, D.D. & Jorge-Villar, S.E. (2004a). J. Raman Spectrosc. 35, 470474.CrossRefGoogle Scholar
Edwards, H.G.M., Cockell, C.S., Newton, E.M. & Wynn-Williams, D.D. (2004b). J. Raman Spectrosc. 35, 463469.CrossRefGoogle Scholar
Edwards, H.G.M., Moody, C.D., Jorge-Villar, S.E. & Wynn-Williams, D.D. (2005a). Icarus 174, 560571.CrossRefGoogle Scholar
Edwards, H.G.M., Jorge-Villar, S.E., Jehlicka, J. & Munshi, T. (2005b). Spectrochim. Acta A 61, 22732280.CrossRefGoogle Scholar
Frost, R.L. & Weier, M. (2004). Neues Jahrb Mineral Monatsh 12, 575594.CrossRefGoogle Scholar
Holder, J.M., Wynn-Williams, D.D., Rull-Perez, F. & Edwards, H.G.M. (2000). New Phytol. 145, 271280.CrossRefGoogle Scholar
Horneck, G. (1995). Planet Space Sci. 43, 189217.CrossRefGoogle Scholar
Horneck, G. et al. (2008). Astrobiology 8, 1744.CrossRefGoogle Scholar
Jorge-Villar, S.E. & Edwards, H.G.M. (2005). Vib. Spectrosc. 39, 8894.CrossRefGoogle Scholar
Jorge-Villar, S.E. & Edwards, H.G.M. (2006). Anal. Bioanal. Chem. 384, 100113.CrossRefGoogle Scholar
Jorge-Villar, S.E. & Edwards, H.G.M. (2010). J. Raman Spectrosc. 41, 6367.CrossRefGoogle Scholar
Jorge-Villar, S.E., Edwards, H.G.M. & Cockell, C.S. (2000). Analyst 130, 156162.CrossRefGoogle Scholar
Jorge-Villar, S.E., Edwards, H.G.M. & Wynn-Williams, D.D. (2003). Int. J. Astrobiol. 1, 349355.CrossRefGoogle Scholar
Jorge-Villar, S.E., Edwards, H.G.M. & Seaward, M.R.D. (2004). Spectrochim. Acta A 60, 12291237.CrossRefGoogle Scholar
Jorge-Villar, S.E., Edwards, H.G.M. & Worland, M.R. (2005a). Orig. Life Evol. Biosph. 35, 489506.CrossRefGoogle Scholar
Jorge-Villar, S.E., Edwards, H.G.M. & Seaward, M.R.D. (2005b). Analyst 130, 730737.CrossRefGoogle Scholar
Jorge-Villar, S.E., Miralles, I., Capel-Ferrón, C. and Hernández, V. (2011). Anal. Methods 3, 27842791.CrossRefGoogle Scholar
Meyer, C. et al. (2008). Int. J. Astrobiol. 7, 7070.Google Scholar
Meyer, C. et al. (2011). Meteorit. Planet. Sci. 46, 701718.CrossRefGoogle Scholar
Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindergren, L., Melosh, J., Rickman, H., Valtonen, M. & Zheng, J.Q. (2000). Icarus 145, 391427.CrossRefGoogle Scholar
Miralles, I., Jorge-Villar, S.E., Canton, Y. & Domingo, F. (2012a). Astrobiology 12, 743753.CrossRefGoogle Scholar
Miralles, I., van Wesemael, B., Cantón, Y., Chamizo, S., Ortega, R., Domingo, F. & Almendros, G. (2012b). Geoderma 189, 227235.CrossRefGoogle Scholar
Nichoson, W.L. (2009). Trends Microbiol. 17, 243250.CrossRefGoogle Scholar
Onofri, S. et al. (2012). Astrobiology 12, 508516.CrossRefGoogle Scholar
Parnell, J., Bowden, S.A., Muirhead, D., Blamey, N., Westall, F., Demets, R., Verchovsky, S., Brandstätter, F. & Brack, A. (2012). Icarus 212, 390402.CrossRefGoogle Scholar
Price, C.P., Grzesiak, A.L. & Matzger, A.J. (2005). J. Am. Chem. Soc. 127, 55125517.CrossRefGoogle Scholar
Raggio, J., Pintado, A., Ascaso, C., De la Torre, R., de los Ríos, A., Wierzchos, J., Horneck, G. & Sancho, L.G. (2011). Astrobiology 11, 281292.CrossRefGoogle Scholar
Sancho, L.G., De la Torre, R., Horneck, G., Ascaso, C., de los Ríos, A., Pintado, A., Wierzchos, J. & Schuster, M. (2007). Astrobiology 7, 443454.CrossRefGoogle Scholar
Scalzi, G., Selbmann, L., Zucconi, L., Rabbow, E., Horneck, G., Albertano, P. and Onofri, S. (2012). Orig. Life Evol. Biosph. 42, 253262.CrossRefGoogle Scholar
Sharma, S.K., Angel, S.M., Ghosh, M., Hubble, H.W. & Lucey, P.G. (2002). Appl. Spectrosc. 56, 699705.CrossRefGoogle Scholar
Sharma, S.K., Lucey, P.G., Ghosh, M., Hubble, H.W. & Horton, K.A. (2003). Acta Part A 59, 23912407.CrossRefGoogle Scholar
Wang, A.L. & Haskin, L.A. (2000). Development of a flight Raman spectrometer for the Athena rover scientific instrument payload for Mars Surveyor missions in Microbeam analysis: Proceedings of the International Conference on Microbeam Analysis, 8–15 July, 2000, Institute of Physics Conferences Series Number 165. eds. D Williams, R Shimizu, pp. 103104. Institute of Physics Publishing, Bristol and Philadelphia.Google Scholar
Wang, A., Haskin, L.A., Lane, A.L., Wdowiak, J.T., Squyres, S.W., Wilson, R.J., Hovland, L.E., Manatt, K.S., Raouf, M. & Smith, C.D. (2003). J. Geophys. Res. 108, 5005.Google Scholar
Wang, A., Kuebler, K.E., Jolliff, B.L. & Haskin, L.A. (2004a). Am. Mineral. 89, 665680.CrossRefGoogle Scholar
Wang, A., Kuebler, K., Jolliff, B. & Haskin, L.A. (2004b). J. Raman Spectrosc. 35, 504514.CrossRefGoogle Scholar
Worth, R.J., Sigurdsson, S. & House, C.H. (2013). Astrobiology 13, 11551165.CrossRefGoogle Scholar
Wynn-Williams, D.D. & Edwards, H.G.M. (2000). Icarus 144, 486503.CrossRefGoogle Scholar
Wynn-Williams, D.D., Edwards, H.G.M. & Garcia-Pichel, F. (1999). Eur. J. Phycol. 34, 381391.CrossRefGoogle Scholar
Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., Macdonald, F.A. & Wikswo, J.P. (2000). Science 290, 791795.CrossRefGoogle Scholar