Article contents
Normal structure and fixed point property
Published online by Cambridge University Press: 18 May 2009
Extract
The most classical sufficient condition for the fixed point property of non-expansive mappings FPP in Banach spaces is the normal structure (see [6] and [10]). (See definitions below). Although the normal structure is preserved under finite lp-product of Banach spaces, (1<p≤∞), (see Landes, [12], [13]), not too many positive results are known about the normal structure of an l1,-product of two Banach spaces with this property. In fact, this question was explicitly raised by T. Landes [12], and M. A. Khamsi [9] and T. Domíinguez Benavides [1] proved partial affirmative answers. Here we give wider conditions yielding normal structure for the product X1⊗1X2.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1996
References
REFERENCES
- 5
- Cited by