Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:59:42.827Z Has data issue: false hasContentIssue false

Equality of essential spectra of quasisimilar operators with property (δ)

Published online by Cambridge University Press:  18 May 2009

T. L. Miller
Affiliation:
Mississippi State University, Drawer MA, Mississippi State, MS 39762, U.S.A. E-mail: [email protected]
V. G. Miller
Affiliation:
Mississippi State University, Drawer MA, Mississippi State, MS 39762, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Banach space operator has property (δ) if and only if it is the quotient of a decomposable operator, equivalently, if and only if its adjoint has Bishop's property (β). Within this class of operators, it is shown that quasisimilarity preserves essential spectra.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1996

References

REFERENCES

1.Albrecht, E. and Eschmeier, J., Analytic functional models and local spectral theory, (submitted).Google Scholar
2.Bishop, E., A duality theorem for an arbitrary operator, Pacific J. Math., 9 (1959), 375397.CrossRefGoogle Scholar
3.Clary, W. S., Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math.Soc. 53 (1975), 8890.Google Scholar
4.Colojoară, I. and Foiaşs, C., Theory of generalized spectral operators, (Gordon and Breach, New York, 1968).Google Scholar
5.Eschmeier, J., Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe des Math. Inst. Universität Münster, 2.42 (Münster, 1987).Google Scholar
6.Finch, J. K., The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 6169.CrossRefGoogle Scholar
7.Grothendieck, A., Sur certains espaces de fonctions holomorphes, I, II, J. Reine Angew. Math 192 (1953), 3564, 77–95.CrossRefGoogle Scholar
8.Heuser, H. G., Functional analysis, (John Wiley and Sons, New York, 1982).Google Scholar
9.Jarchow, H., Locally convex spaces (B. G. Teuber, Stuttgart, 1981).CrossRefGoogle Scholar
10.Köthe, G., Topological vector spaces II (Springer-Verlag, 1979).Google Scholar
11.Miller, V. G., Restrictions and quotients of decomposable operators and spectral inclusions on Banach spaces, Thesis, Mississippi State University, 1993.Google Scholar
12.Miller, V. G. and Neumann, M. M., Local spectral theory for multipliers and convolution operators, in Algebraic Methods in Operator Theory, Ed. Curto, R. and Jorgensen, P. (Birkhäuser, 1994), 2536.CrossRefGoogle Scholar
13.Putinar, M., Spectral theory and sheaf theory I, in Dilation Theory, Toeplitz Operators, and Other Topics (Birkhäuser, 1983), 283298.Google Scholar
14.Putinar, M., Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385395.Google Scholar
15.Putinar, M., Quasisimilarity of tuples with Bishop's property (β), Int. Eq. and Oper.Theory, 15 (1992), 10481052.Google Scholar
16.Shubin, M. A., On holomorphic families of subspaces of Banach spaces, Int. Eq. and Oper.Theory, 2/3 (1979), 407420.CrossRefGoogle Scholar
17.Vasilescu, F.-H., Analytic functional calculus and spectral decompositions (Editura Academiei and D. Reidel Publishing Company, Burcureşsti and Dordrecht, 1982). Operator Theory 3 (1980), 5769.Google Scholar
19.Yang, L., Equality of essential spectra of quasi-similar subnormal operators, Int. Eq. and Oper. Theory, 13 (1990), 433441.Google Scholar
20.Yang, L.Quasisimilarity of hyponormal and sub-decomposable operators, J. Functional Analysis, 112 (1993), 204217.CrossRefGoogle Scholar